Background In the treatment of peripheral early-staged lung cancer and benign lesions, segmentectomy and wedge resection are both reliable treatment methods. It is debatable that how much pulmonary function will be lost after different sublobar resection in the treatment of early-staged deep-located peripheral NSCLC (non-small cell lung cancer). The purpose of this study was to explore postoperative pulmonary function changes of sublobar resection in enrolled patients with non-subpleural peripheral nodules. Methods We collected clinical data of patients undergoing VATS (video-assisted thoracoscopic surgery) segmentectomy or wedge resection for single nodule. These nodules were confirmed as peripheral non-subpleural nodules by preoperative 3D imaging. Patients were divided into two groups according to the operation procedure. Demographic characteristics, pulmonary function, postoperative outcomes, and others were collected. All data was gathered at the First Affiliated Hospital of Soochow University. Outcomes after wedge resection were compared with those after segmentectomy resection. Results A total of 88 patients were included in this study, including 46 patients with VATS wedge resection and 42 patients with VATS segmentectomy. No difference was detected when comparing FEV1 (forced expiratory volume in 1 s) loss between these two groups (17.6 ± 2.1%, wedge resection vs. 19.4 ± 5.4%, segmentectomy, P = 0.176). FVC (forced vital capacity) loss (8.7 ± 2.3%, wedge resection vs. 17.1 ± 2.2%, segmentectomy, P < 0.001) and MVV (maximum ventilatory volume) loss (11.5 ± 3.1%, wedge resection vs. 20.6 ± 7.8%, segmentectomy, P < 0.001) in segmentectomy group was significantly higher than those in wedge resection group. Discrepancies were investigated when comparing duration of surgery (70 ± 22 min, wedge resection vs. 111 ± 52 min, segmentectomy, P = 0.0002), postoperative drainage (85 ± 45 mL, wedge resection vs. 287 ± 672 mL, segmentectomy, P = 0.0123), and treatment hospitalization expenses [35148 ± 889CNY, wedge resection vs. 52,502 (38,276–57,772) CNY, segmentectomy, P < 0.0002]. No significant difference was found between air leak time (1.7 ± 0.7 days, wedge resection vs. 2.5 ± 1.7 days, segmentectomy, P = 0.062) and hospitalization time (2.7 ± 0.7 days, wedge resection vs. 3.5 ± 1.7 days, segmentectomy, P = 0.051). Conclusions For patients with peripheral non-subpleural nodules, we observed that patients who underwent wedge resection had less lung function loss than those who underwent segmentectomy when their lung function was reviewed at the 6th month after surgery. Patients undergoing wedge resection had partial advantages over patients with segmental resection in terms of hospitalization cost, operation time and postoperative drainage, etc. Wedge resection, as a treatment for peripheral non-subpleural pulmonary nodules, seemed to have more advantages in preserving patients’ pulmonary function.
Background Postoperative patients with lung cancer mostly experience different degrees of dyspnea and decreased activity tolerance, and these symptoms all significantly affect postoperative quality of life. The concept of pulmonary rehabilitation applicable to patients with chronic respiratory diseases is also applicable to patients with postoperative lung cancer. The current application of postoperative pulmonary rehabilitation for lung cancer is inconsistent, and reliable guidelines are lacking. The purpose of this study was to further verify the efficacy and feasibility of postoperative pulmonary rehabilitation for lung cancer patients, and to find a suitable local pulmonary rehabilitation program for postoperative patients with lung cancer that is clinically promoted in our department through this study. Methods We collected the clinical data of patients undergoing video-assisted thoracoscopic surgery (VATS) wedge resection or lobectomy. The patients were divided into rehabilitation group (using three-ball breathing apparatus after discharge) and control group (routine follow-up after discharge) according to whether the patients were trained with three-ball breathing apparatus after operation. The detailed method using three-ball apparatus is as follows. To begin with, patients are required to put themselves in a comfortable position. Then, after the three-ball breathing apparatus put on the same plane of their eyes, patients hold the tube in their mouth closely and control their breath slowly. When patients inhale to their largest extent, the balls will rise up accordingly. Then they exhale. The evaluation results of pulmonary function, activity tolerance, anxiety scores and others were collected. All data was gathered at the First Affiliated Hospital of Soochow University. The effects of pulmonary rehabilitation training on wedge resection and lobectomy were compared. Results A total of 210 patients were included in this study, including 126 patients with VATS wedge resection and 84 patients with VATS lobectomies. No discrepancy was noticed when FEV1 loss between two groups were compared in the wedge resection patients, and the same results were also shown in patients undergoing lobectomy (12.8% ± 2.0% vs. 12.7% ± 1.9%, P = 0.84, wedge resection; 12.6% ± 2.9% vs. 12.1% ± 1.8%, P = 0.37, lobectomy). The loss of FVC in the control group was greater than that in the rehabilitation group for patients undergoing lobectomy (11.7% ± 5.2%, vs. 17.1% ± 5.6%, P < 0.001, lobectomy). No difference was found in the wedge resection patients between the control and rehabilitation groups (6.6% ± 2.8%, vs. 6.4% ± 3.2%, P = 0.76, lobectomy). Moreover, all patients showed no significant difference in 6MWD regardless of surgical procedure and with or without breathing exercises at T3 (392.6 ± 50.6 m, rehabilitation group vs. 394.0 ± 46.6 m, control group. P = 0.87, wedge resection; 381.3 ± 38.9 m, rehabilitation group vs. 369.1 ± 49.3 m, control group. P = 0.21, lobectomy). Conclusions For patients after thoracoscopic pulmonary wedge resection, the use of three-ball apparatus did not significantly improve postoperative pulmonary function and activity tolerance, dyspnea, and anxiety symptoms. In patients after thoracoscopic lobectomy, respiratory trainers were able to improve postoperative lung function but were unable to significantly improve dyspnea and anxiety symptoms. There was a significant benefit for the use of three-ball apparatus in patients after thoracoscopic lobectomy, whereas there was no significant benefit for the use of respiratory trainers after wedge resection. Registry: Medical Ethics Committee of the First Affiliated Hospital of Soochow University. Registration number: no. 2022455.
Background: in the treatment of peripheral early-staged lung cancer and benign lesions, segmentectomy and wedge resection are both reliable treatment methods. It is debatable that how much pulmonary function will be lost after different sublobar resection in the treatment of early-staged deep-located peripheral NSCLC (non-small cell lung cancer). The purpose of this study was to explore postoperative pulmonary function changes of sublobar resection in enrolled patients with non-subpleural peripheral nodules. Methods: we collected clinical data of patients undergoing VATS (video-assisted thoracoscopic surgery) segmentectomy or wedge resection for single nodule. These nodules were confirmed as peripheral non-subpleural nodules by preoperative 3D imaging. Patients were divided into two groups according to the operation procedure. Demographic characteristics, pulmonary function, postoperative outcomes,and others were collected. All data was gathered at the First Affiliated Hospital of Soochow University. Outcomes after wedge resection were compared with those after segmentectomy resection. Results: A total of 88 patients were included in this study, including 46 patients with VATS wedge resection and 42 patients with VATS segmentectomy. No difference was detected when comparing FEV1 (Forced Expiratory Volume in One Second) loss between these two groups (17.6389±2.18267%, wedge resection vs. 19.401±5.42039%, segmentectomy, P=0.176). FVC (Forced Vital Capacity) loss (8.7922±2.36723%, wedge resection vs. 17.1267±2.26517%, segmentectomy, P<0.001) and MVV (Maximum Ventilatory Volume) loss (11.543±3.1547%, wedge resection vs. 20.639±7.8527%, segmentectomy, P<0.001) in segmentectomy group was significantly higher than those in wedge resection group. Discrepancies were investigated when comparing duration of surgery (70.43±22.615mins, wedge resection vs. 111.76±52.455mins, segmentectomy, P=0.0002), postoperative drainage (85.65±45.209mL, wedge resection vs. 287.62±672.115mL, segmentectomy, P=0.0123), and treatment hospitalization expenses [35148±889CNY, wedge resection vs. 52502(38276~57772) CNY, segmentectomy, P<0.0002]. No significant difference was found between air leak time (1.78±0.736days, wedge resection vs. 2.57±1.72days, segmentectomy, P=0.062) and hospitalization time (2.78±0.736days, wedge resection vs. 3.57±1.72days, segmentectomy, P=0.051). Conclusions: For patients with peripheral non-subpleural nodules, wedge resection did not cause more loss of lung function than segmental resection. Patients undergoing wedge resection had partial advantages over patients with segmental resection in terms of hospitalization cost, operation time and postoperative drainage, etc. Wedge resection, as a treatment for peripheral non-subpleural pulmonary nodules, had no worse outcome than segmentectomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.