Vibrio vulnificus was found to produce a chemical that induced the expression of Vibrio fischeri lux genes. Electron spray ionization-mass spectrometry and 1 H nuclear magnetic resonance analyses indicated that the compound was cyclo(L-Phe-L-Pro) (cFP). The compound was produced at a maximal level when cell cultures reached the onset of stationary phase. Sodium dodecyl sulfate-polyacrylamide gel analysis of the total proteins of V. vulnificus indicated that expression of OmpU was enhanced by exogenously added synthetic or purified cFP. A toxR-null mutant failed to express ompU despite the addition of cFP. The related Vibrio spp. V. cholerae, V. parahaemolyticus, and V. harveyi also produced cFP, which induced the expression of their own ompU genes. cFP also enhanced the expression in V. cholerae of the ctx genes, which are known to be regulated by ToxR. Our results suggest that cFP is a signal molecule controlling the expression of genes important for the pathogenicity of Vibrio spp.Communication between cells via diffusible chemicals is a general phenomenon found in virtually all living organisms. However, it is only in the last 2 decades that it has been intensively studied in bacteria. One of the best-known examples is quorum sensing. A number of bacteria associated with eukaryotic hosts employ quorum-sensing systems to sense their population density, thereby modulating the expression of sets of genes involved in physiological responses associated with survival, propagation, and/or virulence (9,21,44). N-Acylhomoserine lactones (AHLs) are the most prevalent signal molecules for quorum sensing in gram-negative bacteria, but not all signal molecules belong to this group. For instance, Vibrio harveyi employs a furanosyl borate diester molecule in addition to AHL (7). The plant pathogen Ralstonia solanacearum uses 3-hydroxypalmitic acid methyl ester together with AHL to control the expression of virulence factors (14), and several gram-positive bacteria utilize peptides or ␥-butyrolactone as signals (for a review, see reference 12). Xanthomonas campestris also uses non-AHL signal molecules, which have been identified as fatty acid derivatives, to regulate the expression of virulence factors (3, 54). In addition, cyclic dipeptides produced by Pseudomonas spp. and some other genera can activate AHL bioindicator strains (22). They probably activate or antagonize signaling components implicated in AHL-dependent quorum sensing by cross talk with the associated sensors. However, the actual biological roles of these cyclic dipeptide molecules remain to be clarified.Vibrio vulnificus is an opportunistic human pathogen that causes severe wound infection and primary septicemia (50). It has been reported to possess a functional luxS and produce a signal molecule that induces bioluminescence in a V. harveyi AI-2 reporter strain (25). It is also known to possess smcR, a homolog of the positive regulatory gene luxR of V. harveyi (29). SmcR induces the expression of vvpE, encoding a metalloprotease, and represses vvhAB, encodin...
In order to characterize a nonequilibrium molecular plasma from the point of view of translational, vibrational and rotational degrees of freedom and their interaction, the characteristic temperatures of such a plasma were measured in an ICP rf reactor. Both pure nitrogen and argon–nitrogen mixture plasmas were examined for this purpose.The experimental results of rotational (Tr), vibrational (Tv) and electron (Te) temperatures are presented. Vibrational and rotational temperatures were measured as a function of nitrogen content for both E and H modes of ICP discharge using a power range of 45–200 W and pressure range of 2.6–13.3 Pa. Additionally, the pressure dependence of electron temperature in a pure nitrogen discharge was studied. Results show that rotational temperature is ≈370 K for E mode and ≈470 K for H mode and almost does not depend on either the applied rf power or the nitrogen content in the discharge. Vibrational temperature groups in the range 5000–12 000 K increase with applied rf power and constantly decay with an increase of nitrogen content. The measured values and behaviour of electron temperature are comparable with those for the positive column of the dc glow discharge. The results also prove that these three temperatures obey the classical inequality Te > Tv > Tr, as well as clarifying the differences in both vibrational and rotational temperature for different modes of the ICP discharge.
SummaryConjugal transfer of Agrobacterium tumefaciens Ti plasmids is regulated by two hierarchal signalling systems. Transfer is dependent on a subset of opines produced by the plant tumours induced by the bacterium. Induction also requires an acyl-homoserine lactone signal, called AAI, that is produced by the bacteria themselves. AAI is the co-inducer for TraR, the transcriptional activator required for expression of the tra regulon. Octopine induces conjugation of the octopine-mannityl opine-type Ti plasmids by regulating the expression of traR via OccR, the octopine-dependent activator of the opine regulon. We have discovered a second traR-like gene, trlR, on the octopine-mannityl opine-type Ti plasmids pTi15955 and pTiR10. This gene is located in an operon coding for a mannopine transport system and is expressed as part of the mannityl opine regulon. Sequence analysis indicated that trlR is a frameshift allele of traR, and the resulting protein lacks the carboxy-terminal domain thought to constitute the DNA-binding region of TraR. Expression of trlR inhibited octopine-induced conjugation of pTi15955 and pTiR10 by suppressing the TraRmediated transcription of the tra and trb operons. Although TrlR had no effect on the expression of traR, TraR activated the expression of trlR. Southern hybridizations indicated that several other Ti and opine-catabolic plasmids contain more than one copy of genes homologous to traR. We propose that trlR is a dominant negative allele of traR and that TrlR inhibits conjugation by forming inactive heteromultimers with TraR.
2-(Benzyloxycarbonyl)benzyl (BCB) glycosides were prepared by coupling of the corresponding tetraacetylglycosyl bromides and benzyl 2-(hydroxymethyl)benzoate. The BCB glycosides were converted almost quantitatively into the corresponding 2-(hydroxycarbonyl)benzyl (HCB) glycosides by selective hydrogenolysis of the benzyl ester functionality without affecting the benzylidene acetal and the benzyl ether. Treatment of the HCB 4,6-O-benzylidenemannopyranoside 4 with triflic anhydride in the presence of di-tert-butylmethylpyridine and subsequent addition of the glycosyl acceptor having a primary hydroxyl group afforded exclusively the disaccharide of the beta-mannopyranosyl linkage. Glycosylation of the compound 4 with secondary and tertiary alcohols also provided beta-mannopyranosides as the major products. Glycosylation of the HCB 4,6-O-cyclohexylidenemannoside 5 with primary alcohols was also highly beta-selective, and the HCB 2,3-O-cyclohexylidenemannoside 6 exhibited the moderate beta-selectivity. On the other hand, unlike the HCB mannosides, the HCB 4,6-O-benzylideneglucoside 7 gave exclusively the disaccharides of the alpha-glycopyranosyl linkage in the glycosylation with primary alcohols. The latent BCB-disaccharide 23, which was obtained from the HCB mannoside 4 as the donor and the BCB glucoside 12 as the acceptor by the present glycosylation method, was converted into the active HCB-disaccharide 39 by selective hydrogenolysis. Repetitive glycosylation of the donor 39 with the same acceptor 12 afforded the BCB-trisaccharide 40. Other BCB-trisaccharides 42 and 46 were also efficiently synthesized by employing the present methodology.
Vibrio vulnificus is a pathogenic bacterium that causes gastroenteritis and primary septicemia. To identify factors involved in microbial adherence to the host cells, we investigated bacterial proteins capable of binding to fibronectin, one of the main components comprised of the extracellular matrix of mammalian cells. A protein of ϳ35 kDa was purified from the extracts of V. vulnificus by its property to bind to immobilized fibronectin. This protein was identified as OmpU, one of the major outer membrane proteins of V. vulnificus. In binding assays using immobilized fibronectin, the number of ompU mutant cells bound to fibronectin was only 4% of that of wild-type cells bound to fibronectin. In addition, the exogenous addition of antibodies against OmpU resulted in a decreased ability of wild-type V. vulnificus to adhere to fibronectin. The ompU mutant was also defective in its adherence to RGD tripeptide (5% of the adherence of the wild type to RGD), cytoadherence to HEp-2 cells (7% of the adherence of the wild type to HEp-2), cytotoxicity to cell cultures (39% of the cytotoxicity of the wild type), and mortality in mice (10-fold increase in the 50% lethal dose). The ompU mutant complemented with the intact ompU gene restored its abilities for adherence to fibronectin, RGD tripeptide, and HEp-2 cells; cytotoxicity to HEp-2 cells; and mouse lethality. This study indicates that OmpU is an important virulence factor involved in the adherence of V. vulnificus to the host cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.