Plasma consists of DNA released from multiple tissues within the body. Using genome-wide bisulfite sequencing of plasma DNA and deconvolution of the sequencing data with reference to methylation profiles of different tissues, we developed a general approach for studying the major tissue contributors to the circulating DNA pool. We tested this method in pregnant women, patients with hepatocellular carcinoma, and subjects following bone marrow and liver transplantation. In most subjects, white blood cells were the predominant contributors to the circulating DNA pool. The placental contributions in the plasma of pregnant women correlated with the proportional contributions as revealed by fetal-specific genetic markers. The graft-derived contributions to the plasma in the transplant recipients correlated with those determined using donor-specific genetic markers. Patients with hepatocellular carcinoma showed elevated plasma DNA contributions from the liver, which correlated with measurements made using tumor-associated copy number aberrations. In hepatocellular carcinoma patients and in pregnant women exhibiting copy number aberrations in plasma, comparison of methylation deconvolution results using genomic regions with different copy number status pinpointed the tissue type responsible for the aberrations. In a pregnant woman diagnosed as having follicular lymphoma during pregnancy, methylation deconvolution indicated a grossly elevated contribution from B cells into the plasma DNA pool and localized B cells as the origin of the copy number aberrations observed in plasma. This method may serve as a powerful tool for assessing a wide range of physiological and pathological conditions based on the identification of perturbed proportional contributions of different tissues into plasma.noninvasive prenatal testing | circulating tumor DNA | liquid biopsy | transplantation monitoring | epigenetics
We explored the detection of genome-wide hypomethylation in plasma using shotgun massively parallel bisulfite sequencing as a marker for cancer. Tumor-associated copy number aberrations (CNAs) could also be observed from the bisulfite DNA sequencing data. Hypomethylation and CNAs were detected in the plasma DNA of patients with hepatocellular carcinoma, breast cancer, lung cancer, nasopharyngeal cancer, smooth muscle sarcoma, and neuroendocrine tumor. For the detection of nonmetastatic cancer cases, plasma hypomethylation gave a sensitivity and specificity of 74% and 94%, respectively, when a mean of 93 million reads per case were obtained. Reducing the sequencing depth to 10 million reads per case was found to have no adverse effect on the sensitivity and specificity for cancer detection, giving respective figures of 68% and 94%. This characteristic thus indicates that analysis of plasma hypomethylation by this sequencing-based method may be a relatively cost-effective approach for cancer detection. We also demonstrated that plasma hypomethylation had utility for monitoring hepatocellular carcinoma patients following tumor resection and for detecting residual disease. Plasma hypomethylation can be combined with plasma CNA analysis for further enhancement of the detection sensitivity or specificity using different diagnostic algorithms. Using the detection of at least one type of aberration to define an abnormality, a sensitivity of 87% could be achieved with a specificity of 88%. These developments have thus expanded the applications of plasma DNA analysis for cancer detection and monitoring.epigenomics | epigenetics | next-generation sequencing | tumor markers | global hypomethylation T here is much recent interest in the biology and diagnostic applications of cell-free DNA in the plasma of human subjects. In particular, tumor-associated DNA has been detected in the plasma of cancer patients (1) and fetus-derived DNA has been found in the plasma of pregnant women (2). The finding of these types of circulating nucleic acids has implications for the detection of cancer and noninvasive prenatal testing, respectively. There are also many similarities between the two phenomena, with the
There is much recent research interest in the molecular characteristics of cell-free DNA (cf DNA) in plasma. One such characteristic is the fragmentation patterns of cfDNA, including information regarding fragment sizes (1), nucleosome relationships (2, 3), and end points (4, 5). This area of research can be broadly named "fragmentomics" (6). cfDNA molecules are known to circulate as short fragments (1, 7) originating from different cell types, including various normal organ systems aBstRact Plasma DNA fragmentomics is an emerging area of research covering plasma DNA sizes, end points, and nucleosome footprints. In the present study, we found a significant increase in the diversity of plasma DNA end motifs in patients with hepatocellular carcinoma (HCC). Compared with patients without HCC, patients with HCC showed a preferential pattern of 4-mer end motifs. In particular, the abundance of plasma DNA motif CCCA was much lower in patients with HCC than in subjects without HCC. The aberrant end motifs were also observed in patients with other cancer types, including colorectal cancer, lung cancer, nasopharyngeal carcinoma, and head and neck squamous cell carcinoma. We further observed that the profile of plasma DNA end motifs originating from the same organ, such as the liver, placenta, and hematopoietic cells, generally clustered together. The profile of end motifs may therefore serve as a class of biomarkers for liquid biopsy in oncology, noninvasive prenatal testing, and transplantation monitoring. SIGNIFICANCE: Plasma DNA molecules originating from the liver, HCC and other cancers, placenta, and hematopoietic cells each harbor a set of characteristic plasma DNA end motifs. Such markers carry tissueof-origin information and represent a new class of biomarkers in the nascent field of fragmentomics. Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.