In the absence of external assistance, autogenous healing of bone fracture is difficult due to impaired regeneration ability under osteoporosis pathological conditions. In this study, a reduced graphene oxide/zinc silicate/calcium silicate (RGO/ZS/CS) conductive biocomposite with an optimal surface electroconductivity of 5625 S/m was prepared by a two-step spin-coating method. The presence of lamellar apatite nanocrystals on the surfaces of the biocomposite suggests that it has good in vitro biomineralization ability. The silicon and zinc released from the biocomposite induced a significant increase in the osteogenesis of mouse bone mesenchymal stem cells (mBMSCs). Furthermore, alkaline phosphatase activities were further promoted when 3 μA direct current was applied to stimulate the mBMSCs that were cultured on the RGO/ZS/CS surface. However, electrical stimulation failed to further upregulate the osteogenesis-related gene expression. Moreover, RGO/ZS/CS extracts were found to suppress the receptor activator of nuclear factor-κB ligand-induced osteoclastic differentiation of mouse leukemic monocyte macrophages (RAW264.7 cells). Although the zinc ions in the RGO/ZS/CS extracts showed an inhibitory role in human umbilical vein endothelial cell (HUVEC) proliferation, dilutions of the RGO/ZS/CS extracts (1/16, 1/32, and 1/64) promoted HUVEC proliferation, and their angiogenesis-related gene expression was also upregulated. On the basis of the results of the in vitro angiogenesis model, more interconnected tubes formed when the above dilutions of RGO/ZS/CS extracts were added to ECMatrix. The new RGO/ZS/CS electroconductive biocomposite has potential to be used for stimulating osteoporotic bone regeneration.
To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL−1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight.
We have prepared a (Zn, Na)-containing layer on the surface of calcium silicate bioceramics, which are spin-coated with sodium alginate and nano-zinc silicate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.