Background
Lead (Pb) pollution in soil has become one of the major environmental threats to plant growth and human health. Safe utilization of Pb contaminated soil by phytoremediation require Pb tolerant rapeseed ( Brassica napus L.) accessions. However, breeding of new B. napus cultivars tolerance to Pb stress has been restricted by limited knowledge on molecular mechanisms involved in Pb tolerance. This work was carried out to identify genetic loci related to Pb tolerance during seedling establishment in rapeseed.
Results
Pb tolerance, which was assessed by quantifying radicle length (RL) under 0 or 100 mg/L Pb stress condition, shown an extensive variation in 472 worldwide-collected rapeseed accessions. Based on the criterion of relative RL>80%, six Pb tolerant genotypes were selected. Four quantitative trait loci (QTL) associated with Pb tolerance were identified by Genome-wide association study. The expression level of nine promising candidate genes, including GSTUs , BCATs , UBP13 , TBR and HIPP01 , located in these four QTL regions, were significantly higher or induced by Pb in Pb tolerant accessions in comparison to Pb sensitive accessions.
Conclusion
To our knowledge, this is the first study on Pb tolerant germplasms and genomic loci in B. napus . The findings can provide valuable genetic resources for the breeding of Pb tolerant B. napus cultivar and understanding of Pb tolerance mechanism in Brassica species.
Background : The genus Brassica mainly comprises three diploid and three recently derived allotetraploid species, most of which are highly important vegetable, oil or ornamental crops cultivated worldwide. Despite being extensively studied, the origination of the allotetraploid crops and the overall phylogeny of Brassica genus are still far from completely resolved, which has greatly hindered the development of novel Brassica crops. Here, we target and integrate the chloroplast DNA and mitochondrial DNA to investigate the genetic diversity and relationships in large plant populations centering on Brassica genus. Results : The phylogenetic analyses based on a data set including 72 de novo assembled whole chloroplast genomes, delineated a comprehensive evolutional atlas inside and around Brassica genus. The maternal origin of both B. juncea and B. carinata are monophyletic from cam-type B. rapa and B. nigra , respectively. Nonetheless, the current B. napus contains three major cytoplasmic haplotypes: the cam -type which directly inherited from B. rapa , polima -type which is close to cam -type as a sister, and the predominant nap -type. Intriguingly, nap -type seems phylogenetically integrated with certain sparse C-genome wild species, thus implying that which may have primarily contributed the cytoplasm and the corresponding C subgenome to B. napus . Human breeding creation of the B. napus cytoplasmic male sterile lines (e.g., mori and nsa ) dramatically disturbed the concurrent inheritance between mtDNA and cpDNA. Strong parallel evolution among genera Raphanus , Sinapis, Eruca , Moricandia with Brassica indicates their uncomplete divergence from each other. Conclusions : The overall variation data and elaborated phylogenetic relationships obtained herein can substantially facilitate the development of novel Brassica crops, e.g. the allotetraploid rapeseed with new cytonuclear integrations and the allohexaploid rapeseed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.