We present a semantics-driven approach for stroke-based painterly rendering, based on recent image parsing techniques [Tu et al. 2005; Tu and Zhu 2006] in computer vision. Image parsing integrates segmentation for regions, sketching for curves, and recognition for object categories. In an interactive manner, we decompose an input image into a hierarchy of its constituent components in a parse tree representation with occlusion relations among the nodes in the tree. To paint the image, we build a brush dictionary containing a large set (760) of brush examples of four shape/appearance categories, which are collected from professional artists, then we select appropriate brushes from the dictionary and place them on the canvas guided by the image semantics included in the parse tree, with each image component and layer painted in various styles. During this process, the scene and object categories also determine the color blending and shading strategies for inhomogeneous synthesis of image details. Compared with previous methods, this approach benefits from richer meaningful image semantic information, which leads to better simulation of painting techniques of artists using the high-quality brush dictionary. We have tested our approach on a large number (hundreds) of images and it produced satisfactory painterly effects.
Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringing, jaggy, and blurring artifacts due to the strong yet ad hoc assumptions that the LR image patch representation is equal to, is linear with, lies on a manifold similar to, or has the same support set as the corresponding HR image patch representation. Motivated by the success of deep learning, we develop a data-driven model coupled deep autoencoder (CDA) for single image SR. CDA is based on a new deep architecture and has high representational capability. CDA simultaneously learns the intrinsic representations of LR and HR image patches and a big-data-driven function that precisely maps these LR representations to their corresponding HR representations. Extensive experimentation demonstrates the superior effectiveness and efficiency of CDA for single image SR compared to other state-of-the-art methods on Set5 and Set14 datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.