Solid electrolytes (SEs) are milestones in the technology roadmaps for safe and high energy density batteries. The design of organic SEs is challenged by the need to have dynamic structural fluidity for ion motion. The presence of well-ordered one-dimensional (1D) channels and stability against phase transition in covalent organic frameworks (COFs) render them potential candidates for low-temperature SEs. Herein, we demonstrate two milestones using hydrazone COF as an SE: it achieves an ion conductivity of 10–5 S cm–1 at −40 °C with a Li+ transference number of 0.92 and also prevents the dissolution of small organic molecular electrode in all-solid-state batteries. Using 1,4-benzoquinone as the cathode, a lithium battery using hydrazone COF as a SE runs for 500 cycles at a steady current density of 500 mA g–1 at 20 °C. Considering that hydrazone COF is readily amenable to large-scale production and facile post-synthetic modification, its use in an all-solid-state battery is highly promising.
Lithium–sulfur (Li–S) batteries are strong contenders among lithium batteries due to superior capacity and energy density, but the polysulfide shuttling effect limits the cycle life and reduces energy efficiency due to a voltage gap between charge and discharge. Here, we demonstrate that graphene foam impregnated with single-atom catalysts (SACs) can be coated on a commercial polypropylene separator to catalyze polysulfide conversion, leading to a reduced voltage gap and a much improved cycle life. Also, among Fe/Co/Ni SACs, Fe SACs may be a better option to be used in Li–S systems. By deploying SACs in the battery separator, cycling stability improves hugely, especially considering relatively high sulfur loading and ultralow SAC contents. Even at a metal loading of ∼2 μg in the whole cell, an Fe SAC-modified separator delivers superior Li–S battery performance even at high sulfur loading (891.6 mAh g–1, 83.7% retention after 750 cycles at 0.5C). Our work further enriches and expands the application of SACs catalyzing polysulfide blocking and conversion and improving round trip efficiencies in batteries, without side effects such as electrolyte and electrode decomposition.
Covalent organic frameworks (COFs) are an emerging class of porous crystalline materials constructed from designer molecular building blocks that are linked and extended periodically via covalent bonds. Their high stability, open channels, and ease of functionalization suggest that they can function as a useful cathode material in reversible lithium batteries. Here, a COF constructed from hydrazone/hydrazide‐containing molecular units, which shows good CO2 sequestration properties, is reported. The COF is hybridized to Ru‐nanoparticle‐coated carbon nanotubes, and the composite is found to function as highly efficient cathode in a Li–CO2 battery. The robust 1D channels in the COF serve as CO2– and lithium‐ion‐diffusion channels and improve the kinetics of electrochemical reactions. The COF‐based Li–CO2 battery exhibits an ultrahigh capacity of 27 348 mAh g−1 at a current density of 200 mA g−1, and a low cut‐off overpotential of 1.24 V within a limiting capacity of 1000 mAh g−1. The rate performance of the battery is improved considerably with the use of the COF at the cathode, where the battery shows a slow decay of discharge voltage from a current density of 0.1 to 4 A g−1. The COF‐based battery runs for 200 cycles when discharged/charged at a high current density of 1 A g−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.