Background The current study was carried out to evaluate the possible application of Musa balbisiana starch in formulation of mucoadhesive microsphere for oral delivery of gliclazide (GLZ). The study objective was to improve the oral bioavailability along with prolongation of its duration of action for a better glycaemic control. Ionic gelation technique was employed in formulating the dosage form. Optimization of the batches was carried out by response surface methodology using 32 full factorial designs. The microsphere prepared was characterized for several parameters along with its in vitro release study. The gastrointestinal transit of the optimized batch of prepared microspheres after oral administration was studied in rabbits by using the gamma scintigraphy technique utilizing 99mTc as the labelling agent in the presence of stannous chloride. Also, the optimized batch was studied for its pharmacokinetic parameters. Moreover, the antidiabetic efficacy of the prepared microsphere was evaluated in rats by using the streptozotocin (STZ)-induced diabetic model. Results The factorial design experiment resulted in an optimum formulation coded as F8. The compatible nature of the drug and excipient was revealed from FTIR, DSC and IST studies. The scanning electron micrographs also showed the occurrence of spherical microspheres having a smooth surface. The in vitro release study provided an evidence of an initial burst effect that was followed by a prolong release phase. The pharmacokinetic parameters justified the ability of the prepared dosage form in sustaining the drug release with a 2.7-fold enhancement in drug bioavailability. The images obtained during the gamma scintigraphy study suggested the gastro-retentive nature of the dosage form with the gastro-retentive ability for more than 4 h. Also, the pharmacodynamics study carried out in diabetic rat model confirmed about the better efficacy of the dosage form in lowering the elevated blood glucose level. Conclusion The overall study data provide valuable information about the potential of this banana starch in formulation of a mucoadhesive dosage form that can be used for enhancement of bioavailability of drug-like gliclazide which in turn can provide a beneficial effect in the management of diabetes.
Aim: The purpose of this study was to establish a mode of action for diosgenin against breast cancer employing a range of system biology tools and to corroborate its results with experimental facts.Methodology: The diosgenin-regulated domains implicated in breast cancer were enriched in the Kyoto Encyclopedia of Genes and Genomes database to establish diosgenin-protein(s)-pathway(s) associations. Later, molecular docking and the lead complexes were considered for molecular dynamics simulations, MMPBSA, principal component, and dynamics cross-correlation matrix analysis using GROMACS v2021. Furthermore, survival analysis was carried out for the diosgenin-regulated proteins that were anticipated to be involved in breast cancer. For gene expression analyses, the top three targets with the highest binding affinity for diosgenin and tumor expression were examined. Furthermore, the effect of diosgenin on cell proliferation, cytotoxicity, and the partial Warburg effect was tested to validate the computational findings using functional outputs of the lead targets.Results: The protein-protein interaction had 57 edges, an average node degree of 5.43, and a p-value of 3.83e-14. Furthermore, enrichment analysis showed 36 KEGG pathways, 12 cellular components, 27 molecular functions, and 307 biological processes. In network analysis, three hub proteins were notably modulated: IGF1R, MDM2, and SRC, diosgenin with the highest binding affinity with IGF1R (binding energy −8.6 kcal/mol). Furthermore, during the 150 ns molecular dynamics (MD) projection run, diosgenin exhibited robust intermolecular interactions and had the least free binding energy with IGF1R (−35.143 kcal/mol) compared to MDM2 (−34.619 kcal/mol), and SRC (-17.944 kcal/mol). Diosgenin exhibited the highest cytotoxicity against MCF7 cell lines (IC50 12.05 ± 1.33) µg/ml. Furthermore, in H2O2-induced oxidative stress, the inhibitory constant (IC50 7.68 ± 0.51) µg/ml of diosgenin was lowest in MCF7 cell lines. However, the reversal of the Warburg effect by diosgenin seemed to be maximum in non-cancer Vero cell lines (EC50 15.27 ± 0.95) µg/ml compared to the rest. Furthermore, diosgenin inhibited cell proliferation in SKBR3 cell lines more though.Conclusion: The current study demonstrated that diosgenin impacts a series of signaling pathways, involved in the advancement of breast cancer, including FoxO, PI3K-Akt, p53, Ras, and MAPK signaling. Additionally, diosgenin established a persistent diosgenin-protein complex and had a significant binding affinity towards IGF1R, MDM2, and SRC. It is possible that this slowed down cell growth, countered the Warburg phenomenon, and showed the cytotoxicity towards breast cancer cells.
Background The derivatives of quercetin is known for their immune-modulating antiviral, anti-blood clotting, antioxidant, and also for its anti-inflammatory efficacy. The current study was therefore conducted to examine the noted novel derivatives of quercetin present in plant sources as an immune modulator and as an antiviral molecule in the COVID-19 disease and also to study their affinity of binding with potential three targets reported for coronavirus, i.e., papain-like protease, spike protein receptor-binding domain, and 3C-like protease. Based on the high-positive drug-likeness score, the reported derivatives of quercetin obtained from an open-source database were further filtered. Compounds with positive and high drug-likeness scores were further predicted for their potential targets using DIGEP-Pred software, and STRING was used to evaluate the interaction between modulated proteins. The associated pathways were recorded based on the Kyoto Encyclopedia of Genes and Genomes pathway database. Docking was performed finally using PyRx having AutoDock Vina to identify the efficacy of binding between quercetin derivatives with papain-like protease, spike protein receptor-binding domain, and 3C-like protease. The ligand that scored minimum binding energy was chosen to visualize the interaction between protein and ligand. Normal mode analysis in internal coordinates was done with normal mode analysis to evaluate the physical movement and stability of the best protein-ligand complexes using the iMODS server. Results Forty bioactive compounds with the highest positive drug-likeness scores were identified. These 40 bioactives were responsible for regulating different pathways associated with antiviral activity and modulation of immunity. Finally, three lead molecules were identified based on the molecular docking and dynamics simulation studies with the highest anti-COVID-19 and immunomodulatory potentials. Standard antiviral drug remdesivir on docking showed a binding affinity of − 5.8 kcal/mol with PLpro, − 6.4 kcal/mol with 3CLpro, and − 8.6 kcal/mol with spike protein receptor-binding domain of SARS-CoV-2, the discovered hit molecules quercetin 3-O-arabinoside 7-O-rhamnoside showed binding affinity of − 8.2 kcal/mol with PLpro, whereas quercetin 3-[rhamnosyl-(1- > 2)-alpha-L-arabinopyranoside] and quercetin-3-neohesperidoside-7-rhamnoside was predicted to have a binding affinity of − 8.5 kcal/mol and − 8.8 kcal/mol with spike protein receptor-binding domain and 3CLpro respectively Conclusion Docking study revealed quercetin 3-O-arabinoside 7-O-rhamnoside to possess the highest binding affinity with papain-like protease, quercetin 3-[rhamnosyl-(1- > 2)-alpha-L-arabinopyranoside] with spike protein receptor-binding domain, and quercetin-3-neohesperidoside-7-rhamnoside with 3C-like protease and all the protein-ligand complexes were found to be stable after performing the normal mode analysis of the complexes in internal coordinates. Graphical Abstract
(1) Background: The monkeypox virus is a zoonotic orthopox DNA virus that is closely linked to the virus. In light of the growing concern about this virus, the current research set out to use bioinformatics and immunoinformatics to develop a potential vaccine against the virus. (2) Methods: A multiepitope vaccine was constructed from the B-cell and T-cell epitopes of the MPXVgp181 strain using adjuvant and different linkers. The constructed vaccine was predicted for antigenicity, allergenicity, toxicity, and population coverage. In silico immune simulation studies were also carried out. Expression analysis and cloning of the constructed vaccine was carried out in the pET-28a(+) vector using snapgene. (3) Results: The constructed vaccine was predicted to be antigenic, non-allergenic, and non-toxic. It was predicted to have excellent global population coverage and produced satisfactory immune response. The in silico expression and cloning studies were successful in E. coli, which makes the vaccine construct suitable for mass production in the pharmaceutical industry. (4) Conclusion: The constructed vaccine is based on the B-cell and T-cell epitopes obtained from the MPXVgp181 strain. This research can be useful in developing a vaccine to combat the monkeypox virus globally after performing in-depth in vitro and in vivo studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.