Over the last few decades, polymers and their composites have shown a lot of promises in providing more viable alternatives to surgical procedures that require scaffolds and implants. With the advancement in biomaterial technologies, it is possible to overcome the limitations of current methods, including auto-transplantation, xeno-transplantation, and the implantation of artificial mechanical organs used to treat musculoskeletal conditions. The risks associated with these methods include complications, secondary injuries, and limited sources of donors. Three-dimensional (3D) printing technology has the potential to resolve some of these limitations. It can be used for the fabrication of tailored tissue-engineering scaffolds, and implants, repairing tissue defects in situ with cells, or even printing tissues and organs directly. In addition to perfectly matching the patient’s damaged tissue, printed biomaterials can have engineered microstructures and cellular arrangements to promote cell growth and differentiation. As a result, such biomaterials allow the desired tissue repair to be achieved, and could eventually alleviate the shortage of organ donors. As such, this paper provides an overview of different 3D-printed polymers and their composites for orthopedic applications reported in the literature since 2010. For the benefit of the readers, general information regarding the material, the type of manufacturing method, and the biomechanical tests are also reported.
Clinical findings, manufacturer instructions, and surgeon’s preferences often dictate the implantation of distal femur locked plates (DFLPs), but healing problems and implant failures still persist. Also, most biomechanical researchers compare a particular DFLP configuration to implants like plates and nails. However, this begs the question: Is this specific DFLP configuration biomechanically optimal to encourage early callus formation, reduce bone and implant failure, and minimize bone “stress shielding”? Consequently, it is crucial to optimize, or characterize, the biomechanical performance (stiffness, strength, fracture micro-motion, bone stress, plate stress) of DFLPs influenced by plate variables (geometry, position, material) and screw variables (distribution, size, number, angle, material). Thus, this article reviews 20 years of biomechanical design optimization studies on DFLPs. As such, Google Scholar and PubMed websites were searched for articles in English published since 2000 using the terms “distal femur plates” or “supracondylar femur plates” plus “biomechanics/biomechanical” and “locked/locking,” followed by searching article reference lists. Key numerical outcomes and common trends were identified, such as: (a) plate cross-sectional area moment of inertia can be enlarged to lower plate stress at the fracture; (b) plate material has a larger influence on plate stress than plate thickness, buttress screws, and inserts for empty plate holes; (c) screw distribution has a major influence on fracture micro-motion, etc. Recommendations for future work and clinical implications are then provided, such as: (a) simultaneously optimizing fracture micro-motion for early healing, reducing bone and implant stresses to prevent re-injury, lowering “stress shielding” to avoid bone resorption, and ensuring adequate fatigue life; (b) examining alternate non-metallic materials for plates and screws; (c) assessing the influence of condylar screw number, distribution, and angulation, etc. This information can benefit biomedical engineers in designing or evaluating DFLPs, as well as orthopedic surgeons in choosing the best DFLPs for their patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.