Over a 6-month period, treatment with rifaximin maintained remission from hepatic encephalopathy more effectively than did placebo. Rifaximin treatment also significantly reduced the risk of hospitalization involving hepatic encephalopathy. (ClinicalTrials.gov number, NCT00298038.)
A growing body of evidence suggests that the cellular response to oxidative and nitrosative stress is primarily regulated at the level of transcription. Posttranslational modification of transcription factors may provide a mechanism by which cells sense these redox changes. In bacteria, for example, OxyR senses redox-related changes via oxidation or nitrosylation of a free thiol in the DNA binding region. This mode of regulation may serve as a paradigm for redox-sensing by eukaryotic transcription factors as most-including NF-kappaB, AP-1, and p53-contain reactive thiols in their DNA binding regions, the modification of which alters binding in vitro. Several of these transcription factors have been found to be sensitive to both reactive oxygen species and nitric oxide-related species in vivo. It remains entirely unclear, however, if oxidation or nitrosylation of eukaryotic transcription factors is an important mode of regulation, or whether transcriptional activating pathways are principally controlled at other redox-sensitive levels.-Marshall, H. E., Merchant, K., Stamler, J. S. Nitrosation and oxidation in the regulation of gene expression.
Redox regulation has been perceived as a simple on-off switch in proteins (corresponding to reduced and oxidized states). Using the transcription factor OxyR as a model, we have generated, in vitro, several stable, posttranslational modifications of the single regulatory thiol (SH), including S-NO, S-OH, and S-SG, and shown that each occurs in vivo. These modified forms of OxyR are transcriptionally active but differ in structure, cooperative properties, DNA binding affinity, and promoter activities. OxyR can thus process different redox-related signals into distinct transcriptional responses. More generally, our data suggest a code for redox control through which allosteric proteins can subserve either graded (cooperative) or maximal (noncooperative) responses, and through which differential responsivity to redox-related signals can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.