Objective: Ivabradine (IB) is anti-Ischemic drug and used for the symptomatic management of stable angina pectoris. IB acts by reducing the heart rate in a mechanism different from beta blockers and calcium channel blockers, two commonly prescribed anti-anginal drugs. IB has a short biological half-life and the dose of 5/7.5 mg twice a day. In this present study, an attempt has been made to prepare sustained release tablet of IB to achieve the desired drug release. Methods:The sustained release polymers, hydroxypropyl methylcellulose K100M (HPMC K100M), guar gum (GG) and xanthan gum (XG) were taken for the preliminary trail from which guar gum and xanthan gum had shown better drug release. Initially, drug-excipients compatibility studies were carried out by using Fourier transformed infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) which showed no interaction between drug and excipients. Tablets were prepared by wet granulation technique and evaluated for pre-compression and postcompression parameters.Results: 3 2 full factorial design was applied to achieve controlled drug release up to 24 h. The concentration of GG (X1) and XG (X2) were selected as independent variables and the % CDR at 2 h. (Y1) and 18 h. (Y2) were taken as dependent variables. In vitro drug release study revealed that as the amount of polymers increased, % CDR decreased. Conclusion:Contour as well as response surface plots were constructed to show the effect of X1 and X2 on % CDR and predicted at the concentration of independent variables X1 (10 mg) and X2 (10 mg) for a maximized response. The optimized batch (O1) was kept for stability study at 40±2 °C/75±5 %RH for a period of 6mo according to ICH guidelines and found to be stable.
The aim of this study was to develop an elementary osmotic pump tablet of Flurbiprofen and to deliver the drug at a zero-order rate. Elementary osmotic pumps are well known for delivering moderately soluble drugs at a zero-order rate. Elementary osmotic pump tablets containing an inclusion complex of Flurbiprofen was prepared by the direct compression method. The amount of osmotic agent and size of delivery orifice were selected as independent variables. Percent cumulative drug release at 9 h was evaluated for all batches, and it was found that amount of osmotic agent and size of delivery orifice had a significant effect on percent cumulative drug release. The drug release from the developed formulation was found to be independent of pH and agitational intensity. It was also observed that the optimized formulation followed zero-order kinetics and was stable for 6 months at accelerated conditions.
Objective: Aim of the present study was the optimization of the sustained release (SR) layer of isosorbide dinitrate (ISDN) 40 mg and compressed with the immediate-release (IR) layer of hydralazine hydrochloride (HHC) 25 mg to decrease the dosing frequency and development of a novel b. i. d dosage form. Methods: Drug excipients compatibility study was carried out by FT-IR and a preliminary study was conducted for screening of polymer. The amount of HPMC K100M (X1) and the amount of Polyoxtm WSR303 (X2) were chosen as independent variables in 32full factorial designs. While % cumulative drug releases at 1 h (Q1) (Y1), % cumulative drug release at 2 h (Q2) (Y2), % cumulative drug release at 4 h (Q4) (Y3) and % cumulative drug release at 6 h (Q6) (Y4), were taken as dependent variables and statistically evaluation by using sigma plot 13.0. In the present study, according to the U. S. P. 2007 the following constraints were used for the selection of an optimized batch: Q1=15% to 30%, Q2=50% to 70%, Q4=65% to 85% and Q6>75%. To validate the evolved mathematical models, a checkpoint batch was selected from its desirability value. Results: FT-IR spectra show that the drug and excipients were compatible with each other. The calculated F values found for Q1, Q2, Q4, and Q6 were 084.583, 038.188, 057.719, and 118.396, respectively. All Calculated F values are greater than the tabulated value for all dependent variables. Prepared checkpoint batch selected from its desirability value 1 and it gives a 93.40±1.29 % drug release within 6 h. Conclusion: This bilayer formulation of anti-hypertensive drugs decreases the dosing frequency of HHC and ISDN.
The ultimate aim of the present study was to develop sustained release (SR) tablets of Donepezil Hydrochloride by employing natural polymers (Guar gum and Xanthan gum) as the matrix material in different proportion by wet granulation method. Initially drug-excipients compatibility studies were carried out using FTIR and DSC which showed no interaction between drug and excipients. Granules of prepared batches were evaluated for bulk density, tapped density, carr's index, hausner's ratio, angle of repose. Tablets were evaluated for various physicochemical parameters like hardness, thickness, friability, weight variation test, drug content and in vitro drug release. All the formulation showed compliance with pharmacopoeial standards. 3 2 full factorial design was applied in which Guar gum (X 1 ) and Xanthan gum (X 2 ) were taken as independent factor and %CDR at 2hr (Y 1 ) and at 12hr (Y 2 ) were taken as response. In-vitro drug release study revealed that as the amount of polymers increased, % CDR decreased. Contour plots as well as response surface plots were constructed to show the effect of X 1 and X 2 on %CDR and predicted at the concentration of independent variables X 1 (40mg) and X 2 (40mg) for maximized response. The kinetic release treatment showed that korsmeyer peppas equation has shown of r 2 0.9517 which was close to one indicating that the dissolution profile fits in Korsmeyer-Peppas model and the mechanism of drug release from these tablets was by non-fickian diffusion mechanism. The optimized batch was kept for stability study at 40 ± 2 o C/ 75 ± 5 % RH for a period of 1 month according to ICH guidelines and found to be stable after 1 month of study.
The aim of the present study to prepare Pulsatile release tablet of naproxen for the treatment of rheumatoid arthritis. The drug delivery system was designed to deliver the drug at a time when it could be most needful for the patient. Drug excipient compatibility studies were carried out using DSC and found to be compatible with each other. Pulsatile tablet was prepared by direct compression method using different type and amount of superdisintegrants and coating polymers and evaluated for pre and post compression parameters. Box Behnken design was applied to optimize responses. Concentrations of Sodium starch glycolate (SSG) (X1), Ethyl cellulose (EC) (X2), and HPMC K100M (X3) were selected as independent variables while Lag time (Y1) and % drug release at 8 hrs (Y2) were selected as dependent variables. The prepared tablets were evaluated for post compression parameters and results indicated that concentration of SSG has major effect on in vitro drug release while concentration of EC and HPMC K100M has major effect on Lag time. Batch BE13 prepared with SSG 35mg, EC 175mg, and HPMC K100M 75 mg was found to be best batch as it achieves predetermined lag time of 5 hr 02 min and 99.32% of drug release. There was no significant variation in formulation at the end of six month accelerated stability study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.