Hardware-in-the-loop (HIL) simulation is a real-time testing process that has been proven indispensable for the modern vehicle dynamics, powertrain, chassis and body systems electronic controls development. The high quality standards and robustness of the control algorithms can only be met by means of detailed vehicle plant simulation models. In the last few years, several efforts have been made to develop detailed plant models. Several tools for the vehicle modeling are available in the market and each tool has different and distinct advantages. This paper addresses ways that dSPACE Automotive Simulation Models (ASM) can support the model-based development processes. Additional modern software tools that were used in connection with the ASM are LMS AMESim and Mathworks SimDriveline (of Simscape). ASM is an open Matlab/Simulink model environment used for offline PC based simulation and online real-time platform HIL testing. The combinations of system models from different suppliers typically require significant adaptation effort. dSPACE's ASM are ideally adapted to dSPACE hardware-in-the-loop simulators with real time capability whereas the AMESim environment requires a special procedure to make it compliant with dSPACE real-time hardware. This paper describes how AMESim vehicle dynamics, SimDriveline automatic transmission models and ASM parallel hybrid vehicle models are integrated for a dSPACE HIL real-time simulation environment.
The tropical parasitic infections account to more than 2 billion infections and cause substantial morbidity and mortality, and accounts to several million deaths every year. Majorly parasitic infections in humans and animals are caused by protozoa and helminths. Chronic infections in host can cause retardation, impairment of cognitive skills, development in young children and weaken the immune system. The burden is felt to a greater extent in developing countries due to poverty, inaccessibility to medicines and resistance observed to drugs. Thus, human health continues to be severely harmed by parasitic infections. Medicinal plants have received much attention as alternative sources of drugs. Zanthoxylum genus has been used ethnobotanically as an antiparasitic agent and the phytoconstituents in Zanthoxylum, show wide variety of chemical substances with proven pharmacological actions such as alkaloids (isoquinolines and quinolines responsible for antitumor activity, antimalarial, antioxidant and antimicrobial actions), lignans, coumarins (antibacterial, antitumour, vasodilatory and anticoagulant activities), alkamide (strong insecticidal properties, anthelminthic, antitussive and analgesic anti antimalarial property). Therefore, this article is an attempt to review the existing literature that emphasizes on potential of genus Zanthoxylum as source of lead compounds for treatment of parasitic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.