We report unprecedented superomniphobic characteristics of nanotube-structured TiO(2) surface fabricated by electrochemical etching and hydrothermal synthesis process, with the wettability contact angles for water and oil both being ∼174° or higher. A tangled forest of ∼8-nm-diameter, multiwalled nanotubes of TiO(2) was produced on the microtextured Ti surface, with the overall nanotube length controlled to 150 nm by adjusting the processing time. Wettability measurements indicate that the nanotube surface is extremely nonwettable to both water and oil. The contact angle of the 8 nm TiO(2) nanotube surface after perfluorosilane coating is extremely high (178°) for water droplets indicating superhydrophobic properties. The contact angle for oil, measured using a glycerol droplet, is also very high, about 174°, indicating superoleophobic characteristics. These dual nonwetting properties, superomniphobic characteristics, are in sharp contrast to the as-made TiO(2) nanotubes which exhibit superhydrophilic properties with a contact angle of essentially ∼0°. Such an extreme superomniphobic material made by a simple and versatile method can be useful for a variety of technical applications. It is interesting to note that all three properties can be obtained with identical nanotube structures. A nanometer-scaled structure introduced by hydrothermally grown TiO(2) nanotubes is an effective air trapping nanostructure in enhancing the amphiphobic (superomniphobic) wettability.
Nanostructured surface geometries have been the focus of a multitude of recent biomaterials research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO2) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ~30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO2 nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.