Aim
The aim of the study was to assess the effect of implant placement depth on stress distribution in bone around a platform-switched and Morse taper dental implants placed at the equi-crestal and 1 mm and 2 mm sub-crestal levels in a D3 bone using the 3D finite element analysis.
Methodology
A mechanical model of a partially edentulous maxilla was generated from a computerized tomography (CT) scan of an edentulous patient, as it can give exact bony contours of cortical bone. Also, from accurate geometric measurements obtained from the manufacturer, 3D models of Morse taper and platform-switched implants were manually drawn. The implant and bone models were then superimposed to simulate implant insertion in bone. Three implant positioning levels such as the equi-crestal, 1 mm sub-crestal, and 2 mm sub-crestal models were created, and meshing was done to create the number of elements for distribution of applying loads. The elastic properties of cortical bone and implant, such as Young's modulus and Poisson's ratio (µ), were determined. A load (axial and oblique) of 200N that simulated masticatory force was applied.
Results
On comparing stresses within the bone around the equi-crestal and 1 mm and 2 mm sub-crestal implants, it was observed that the maximum stresses were seen within cortical bone around the equi-crestally placed implant (21.694), the least in the 2 mm sub-crestally placed implant (18.85), and intermediate stresses were seen within the 1 mm sub-crestally placed implant (18.876).
Conclusion
Sub-crestal (1-2mm) placement of a Morse taper and a platform-switched implant is recommended for long-term success, as maximum von Mises stresses were found within cortical bone around the equi-crestal implant followed by the 1 mm sub-crestal implant and then the 2 mm sub-crestal implant.
Implant-supported overdentures are advantageous over conventional dentures, as they improve patient esthetics and enable retention, stability, comfort, and psychological well-being of the patient. This article describes a simple chairside technique for loading maxillary and mandibular dentures onto implant ball attachments.
BackgroundPre-prosthetic implant radiographic imaging helps in the quantitative and qualitative analysis of the bone structure and also enables the evaluation of the relationship between critical structures and potential implant sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.