P2P systems inherently have high scalability, robustness and fault tolerance because there is no centralized server and the network self-organizes itself. This is achieved at the cost of higher latency for locating the resources of interest in the P2P overlay network. Internet telephony can be viewed as an application of P2P architecture where the participants form a self-organizing P2P overlay network to locate and communicate with other participants. We propose a pure P2P architecture for the Session Initiation Protocol (SIP)-based IP telephony systems. Our P2P-SIP architecture supports basic user registration and call setup as well as advanced services such as offline message delivery, voice/video mails and multi-party conferencing. We also provide an overview of practical challenges for P2P-SIP such as firewall, Network Address Translator (NAT) traversal and security.
Wheat streak mosaic virus (WSMV) causes wheat streak mosaic, a disease of cereals and grasses that threatens wheat production worldwide. It is a monopartite, positive-sense, single-stranded RNA virus and the type member of the genus Tritimovirus in the family Potyviridae. The only known vector is the wheat curl mite (WCM, Aceria tosichella), recently identified as a species complex of biotypes differing in virus transmission. Low rates of seed transmission have been reported. Infected plants are stunted and have a yellow mosaic of parallel discontinuous streaks on the leaves. In the autumn, WCMs move from WSMV-infected volunteer wheat and other grass hosts to newly emerged wheat and transmit the virus which survives the winter within the plant, and the mites survive as eggs, larvae, nymphs or adults in the crown and leaf sheaths. In the spring/summer, the mites move from the maturing wheat crop to volunteer wheat and other grass hosts and transmit WSMV, and onto newly emerged wheat in the fall to which they transmit the virus, completing the disease cycle. WSMV detection is by enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR) or quantitative RT-PCR (RT-qPCR). Three types of WSMV are recognized: A (Mexico), B (Europe, Russia, Asia) and D (USA, Argentina, Brazil, Australia, Turkey, Canada). Resistance genes Wsm1, Wsm2 and Wsm3 have been identified. The most effective, Wsm2, has been introduced into several wheat cultivars. Mitigation of losses caused by WSMV will require enhanced knowledge of the biology of WCM biotypes and WSMV, new or improved virus detection techniques, the development of resistance through traditional and molecular breeding, and the adaptation of cultural management tactics to account for climate change.
BackgroundHistone chaperones modulate chromatin architecture and hence play a pivotal role in epigenetic regulation of gene expression. In contrast to their animal and yeast counterparts, not much is known about plant histone chaperones. To gain insights into their functions in plants, we sought to identify histone chaperones from two model plant species and investigated their phylogeny, domain architecture and transcriptional profiles to establish correlation between their expression patterns and potential role in stress physiology and plant development.ResultsThrough comprehensive whole genome analyses of Arabidopsis and rice, we identified twenty-two and twenty-five genes encoding histone chaperones in these plants, respectively. These could be classified into seven different families, namely NAP, CAF1, SPT6, ASF1, HIRA, NASP, and FACT. Phylogenetic analyses of histone chaperones from diverse organisms including representative species from each of the major plant groups, yeast and human indicated functional divergence in NAP and CAF1C in plants. For the largest histone chaperone family, NAP, phylogenetic reconstruction suggested the presence of two distinct groups in plants, possibly with differing histone preferences. Further, to comment upon their physiological roles in plants, we analyzed their expression at different developmental stages, across various plant tissues, and under biotic and abiotic stress conditions using pre-existing microarray and qRT-PCR. We found tight transcriptional regulation of some histone chaperone genes during development in both Arabidopsis and rice, suggesting that they may play a role in genetic reprogramming associated with the developmental process. Besides, we found significant differential expression of a few histone chaperones under various biotic and abiotic stresses pointing towards their potential function in stress response.ConclusionsTaken together, our findings shed light onto the possible evolutionary trajectory of plant histone chaperones and present novel prospects about their physiological roles. Considering that the developmental process and stress response require altered expression of a large array of genes, our results suggest that some plant histone chaperones may serve a regulatory role by controlling the expression of genes associated with these vital processes, possibly via modulating chromatin dynamics at the corresponding genetic loci.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0414-8) contains supplementary material, which is available to authorized users.
Cyclophilins belong to a family of proteins that bind to the immunosuppressive drug cyclosporin A (CsA). Several members of this protein family catalyze the cis-trans isomerization of peptide bonds preceding prolyl residues. The present study describes the biochemical and structural characteristics of a cytosolic cyclophilin (TaCypA-1) cloned from wheat (Triticum aestivum L.). Purified TaCypA-1 expressed in Escherichia coli showed peptidyl-prolyl cis-trans isomerase activity, which was inhibited by CsA with an inhibition constant of 78.3 nM. The specific activity and catalytic efficiency (kcat/Km) of the purified TaCypA-1 were 99.06 ± 0.13 nmol s(-1) mg(-1) and 2.32 × 10(5) M(-1) s(-1), respectively. The structures of apo TaCypA-1 and the TaCypA-1-CsA complex were determined at 1.25 and 1.20 Å resolution, respectively, using X-ray diffraction. Binding of CsA to the active site of TaCypA-1 did not result in any significant conformational change in the apo TaCypA-1 structure. This is consistent with the crystal structure of the human cyclophilin D-CsA complex reported at 0.96 Å resolution. The TaCypA-1 structure revealed the presence of a divergent loop of seven amino acids (48)KSGKPLH(54) which is a characteristic feature of plant cyclophilins. This study is the first to elucidate the structure of an enzymatically active plant cyclophilin which shows peptidyl-prolyl cis-trans isomerase activity and the presence of a divergent loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.