BackgroundChronic atrophic gastritis (CAG) is a precancerous condition. It is not easy to detect CAG in endoscopy. Improving the detection rate of CAG under endoscopy is essential to reduce or interrupt the occurrence of gastric cancer. This study aimed to construct a deep learning (DL) model for CAG recognition based on endoscopic images to improve the CAG detection rate during endoscopy.MethodsWe collected 10,961 endoscopic images and 118 video clips from 4,050 patients. For model training and testing, we divided them into two groups based on the pathological results: CAG and chronic non-atrophic gastritis (CNAG). We compared the performance of four state-of-the-art (SOTA) DL networks for CAG recognition and selected one of them for further improvement. The improved network was called GAM-EfficientNet. Finally, we compared GAM-EfficientNet with three endoscopists and analyzed the decision basis of the network in the form of heatmaps.ResultsAfter fine-tuning and transfer learning, the sensitivity, specificity, and accuracy of GAM-EfficientNet reached 93%, 94%, and 93.5% in the external test set and 96.23%, 89.23%, and 92.37% in the video test set, respectively, which were higher than those of the three endoscopists.ConclusionsThe CAG recognition model based on deep learning has high sensitivity and accuracy, and its performance is higher than that of endoscopists.
Background and aimsThe diagnosis of chronic atrophic gastritis (CAG) under normal white-light endoscopy depends on the endoscopist's experience and is not ideal. Artificial intelligence (AI) is increasingly used to diagnose diseases with good results. This review aimed to evaluate the accuracy of AI-assisted diagnosis of CAG through a meta-analysis.MethodsWe conducted a comprehensive literature search of four databases: PubMed, Embase, Web of Science, and the Cochrane Library. Studies published by November 21, 2022, on AI diagnosis CAG with endoscopic images or videos were included. We assessed the diagnostic performance of AI using meta-analysis, explored the sources of heterogeneity through subgroup analysis and meta-regression, and compared the accuracy of AI and endoscopists in diagnosing CAG.ResultsEight studies that included a total of 25,216 patients of interest, 84,678 image training set images, and 10,937 test set images/videos were included. The results of the meta-analysis showed that the sensitivity of AI in identifying CAG was 94% (95% confidence interval [CI]: 0.88–0.97, I2 = 96.2%), the specificity was 96% (95% CI: 0.88–0.98, I2 = 98.04%), and the area under the summary receiver operating characteristic curve was 0.98 (95% CI: 0.96–0.99). The accuracy of AI in diagnosing CAG was significantly higher than that of endoscopists.ConclusionsAI-assisted diagnosis of CAG in endoscopy has high accuracy and clinical diagnostic value.Systematic review registrationhttp://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42023391853.
Background and aimsEndoscopic ultrasonography (EUS) is commonly utilized in the diagnosis of pancreatic tumors, although as this modality relies primarily on the practitioner’s visual judgment, it is prone to result in a missed diagnosis or misdiagnosis due to inexperience, fatigue, or distraction. Deep learning (DL) techniques, which can be used to automatically extract detailed imaging features from images, have been increasingly beneficial in the field of medical image-based assisted diagnosis. The present systematic review included a meta-analysis aimed at evaluating the accuracy of DL-assisted EUS for the diagnosis of pancreatic tumors diagnosis.MethodsWe performed a comprehensive search for all studies relevant to EUS and DL in the following four databases, from their inception through February 2023: PubMed, Embase, Web of Science, and the Cochrane Library. Target studies were strictly screened based on specific inclusion and exclusion criteria, after which we performed a meta-analysis using Stata 16.0 to assess the diagnostic ability of DL and compare it with that of EUS practitioners. Any sources of heterogeneity were explored using subgroup and meta-regression analyses.ResultsA total of 10 studies, involving 3,529 patients and 34,773 training images, were included in the present meta-analysis. The pooled sensitivity was 93% (95% confidence interval [CI], 87–96%), the pooled specificity was 95% (95% CI, 89–98%), and the area under the summary receiver operating characteristic curve (AUC) was 0.98 (95% CI, 0.96–0.99).ConclusionDL-assisted EUS has a high accuracy and clinical applicability for diagnosing pancreatic tumors.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023391853, identifier CRD42023391853.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.