Microforming is a relatively new realm of manufacturing technology that addresses the issues involved in the fabrication of metallic microparts, i.e., metallic parts that have at least two characteristic dimensions in the sub-millimeter range. The recent trend towards miniaturization of products and technology has produced a strong demand for such metallic microparts with extremely small geometric features and high tolerances. Conventional forming technologies, such as extrusion, have encountered new challenges at the microscale due to the influence of "size effects" that tend to be predominant at this length scale. One of the factors that of interest is friction. The two companion papers investigate the frictional behavior and size effects observed during microextrusion in Part I and in a stored-energy Kolsky bar test in Part II. In this first paper, a novel experimental setup consisting of forming assembly and a loading stage has been developed to obtain the force-displacement response for the extrusion of pins made of brass (Cu/ Zn: 70/ 30). This experimental setup is used to extrude pins with a circular cross section that have a final extruded diameter ranging from 1.33 mm down to 570 m. The experimental results are then compared to finite-element simulations and analytical models to quantify the frictional behavior. It was found that the friction condition was nonuniform and showed a dependence on the dimensions (or size) of the micropin under the assumption of a homogeneous material deformation. Such assumption will be eliminated in Part II where the friction coefficient is more directly measured. Part I also investigates the validity of using high-strength/low-friction die coatings to improve the tribological characteristics observed in micro-extrusion. Three different extrusion dies coated with diamondlike carbon with silicon (DLC-Si), chromium nitride (CrN), and titanium nitride (TiN) were used in the microextrusion experiments. All the coatings worked satisfactorily in reducing the friction and, correspondingly, the extrusion force with the DLC-Si coating producing the best results.
Abstract:The tribo-characteristics of metal forming at high temperatures have not yet been well understood due to the complex nature of thermal, microstructural, interaction, and process parameters. This is a review paper on the effects of temperature, coating, and lubrication to the tribological characteristics in hot forming as well as the tribometers for different metal forming processes at elevated temperatures mainly based on the experimental work. The tribological behaviors of oxides in hot forming, such as rolling and stamping, were reviewed and presented. Some commonly used surface coatings and lubricants in hot forming were given. Many types of tribometer were selected and presented and some of them provided a great potential to characterize friction and wear at elevated temperatures. Nevertheless, more testing conditions should be further investigated by developing new tribometers. Eventually, experimental results obtained from reliable tribometers could be used in theory and model developments for different forming processes and materials at high temperatures. The review also showed the great potential in further investigations and innovation in tribology.
Galling phenomena in metal forming not only affect the quality of the engineered surfaces but also the success or failure of the manufacturing operation itself. This paper reviews the different galling conditions in sheet and bulk metal forming processes along with their evolution and the effects of temperature on galling. A group of anti-galling methods employed to prevent galling defects are also presented in detail. The techniques for quantitatively measuring galling are introduced, and the related prediction models, including friction, wear, and galling growth models, are presented to better understand the underlying phenomena. Galling phenomena in other processes similar to those occurring in metal forming are also examined to suggest different ways of further studying galling in metal forming. Finally, future research directions for the study of galling in metal forming are suggested.
The in-service life of ASTM A36 welded steel pipes in power plants is often shortened by ash corrosion. During the heating condition, the ash deposition on the welded steel pipes gradually reduces the thickness of the pipes, thus, reducing the lifetime. Instead of replacing the pipes with new ones, the cost could be significantly reduced if the lifetime could be further extended. Weld cladding was the method selected in this study to temporarily extend the service life of welded pipes. This paper performed the mechanical investigations of A36—A36 welded steel plates after coating the surfaces with 309L stainless steel with a cladding method. The residual stress was also tested to observe the internal stresses developed during the welding processes of A36—A36 specimens. The comparison between the coated and non-coated surfaces of welded steels was performed by using the tensile tests (at room and elevated temperatures), corrosion (pitting corrosion, intergranular corrosion, and weight-loss corrosion) tests, and wear (shot blasting) tests. The life-extension of both coatings was evaluated based on the tensile tests and the corrosion and wear tests provided the qualitative evaluations of the coating performance. The results showed that surfaces coated by cladding could be used to temporarily extend the life of ASTM A36 welded steel under the studied conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.