Mouse incisors have a cervical loop that gives rise to dental epithelium in the apical region of the tooth germ, in contrast to molars. In a study of formation of the stem-cell compartment, we focused on expression patterns of fibroblast growth factor (Fgf) 10 and Fgf3 in developing mice incisors. At E14, Fgf10 and Fgf3 were coexpressed in the dental papilla. After E16 mesenchymal cells underlying cervical loop expressed Fgf10 but not Fgf3. To illustrate the role of FGF10, we analyzed incisor development of Fgf10-deficient mice. The germs of FGF10-null mice proceeded to cap stage normally. However, at a later stage, the cervical loop was not formed. Functional disorder of FGF10 by a neutralizing anti-FGF10 antibody induced apoptosis in the cervical loop of incisor explants. Recombinant FGF10 rescued the cervical loop from apoptosis. These results show that FGF10 maintains the stem-cell compartment in the developing incisor tooth germ.
We identified a gene (atlA) encoding autolytic activity from Streptococcus mutans Xc. The AtlA protein predicted to be encoded by atlA is composed of 979 amino acids with a molecular weight of 107,279 and has a conserved -1,4-N-acetylmuramidase (lysozyme) domain in the C-terminal portion. Sodium dodecyl sulfate extracts of strain Xc showed two major bacteriolytic bands with molecular masses of 107 and 79 kDa, both of which were absent from a mutant with inactivated atlA. Western blot analysis revealed that the 79-kDa band was derived from the 107-kDa peptide by cleavage of its N-terminal portion. The inactivation of atlA resulted in a marked decrease in autolysis and the formation of very long chains of cells compared to the case for the parent strain. Although both the parent and mutant strains formed biofilms in the presence of sucrose, the biofilms formed by the mutant had a sponge-like architecture with large gaps and contained 30% less biomass than those formed by the parent strain. Furthermore, strain Xc formed glucose-dependent, loose biofilms in the absence of sucrose, but the mutant lost this ability. These results suggest that AtlA may play an important role in biofilm formation by S. mutans. The antibody produced against the C-terminal peptide containing the -1,4-N-acetylmuramidase domain drastically inhibited the autolytic activity of strain Xc. This inhibition was specific among the oral streptococci to S. mutans. These results indicate that the catalytic domain of AtlA is located at the C terminus, suggesting that further characterization of this domain may provide a means to control cariogenic dental plaque formation.
Taste-metabotropic glutamate receptor 4 (taste-mGluR4) and the heteromers of T1R1 and T1R3 are candidate receptors involved in the sense of umami (monosodium glutamate) taste. Although the expression of group III mGluRs (taste-mGluR4) has been demonstrated in taste tissues, no mention has been made of the expression of group I mGluRs (mGluR1 and mGluR5) in taste tissues. We examined the expression of mGluR1 and mGluR5 in rat gustatory tissues by using reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization, immunohistochemistry and immunoelectron microscopy. RT-PCR assay showed that mGluR1 alpha and mGluR1 beta mRNAs were expressed in circumvallate papillae, but mGluR5 mRNA was not expressed. The positive signals of mGluR1 mRNA were detected only in circumvallate taste buds by in situ hybridization analysis. In cryosections of fungiform, foliate and circumvallate papillae, the antibody against mGluR1 alpha gave intense labeling on the taste hairs in all taste pores examined. In the developing taste buds, the positive signals of mGluR1alpha in taste hairs gradually increased with the increase in number of taste bud cells. These results show that, in addition to taste-mGluR4 and the heteromer of T1R1 and T1R3, mGluR1 alpha may function as a receptor for glutamate (umami) taste sensation.
Dental epithelial progenitor cells differentiate into various cell types during development of tooth germs. To study this mechanism, we produced immortalized dental epithelial progenitor cells derived from the cervical-loop epithelium of a rat lower incisor. The expression patterns of cytokeratin 14, nerve growth factor receptor p75, amelogenin, Notch2, and alkaline phosphatase were examined by immunohistochemistry in both lower and higher cell densities. The patterns of each were compared in the dental epithelium of rat lower incisors. The results demonstrated that these cells could produce ameloblast lineage cells, stratum intermedium cells, stellate reticulum, and outer enamel epithelium. Furthermore, fibroblast growth factor 10 stimulated proliferation of dental progenitor cells and subsequently increased the number of cells expressing alkaline phosphatase. These results suggest that fibroblast growth factor 10 plays a role in coupling mitogenesis of the cervical-loop cells and the production of stratum intermedium cells in rat incisors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.