Transforming growth factor-β (TGF-β) is a multifunctional cytokine that regulates cell growth, differentiation, and apoptosis of various types of cells. Autophagy is emerging as a critical response of normal and cancer cells to environmental changes, but the relationship between TGF-β signaling and autophagy has been poorly understood. Here, we showed that TGF-β activates autophagy in human hepatocellular carcinoma cell lines. TGF-β induced accumulation of autophagosomes and conversion of microtubule-associated protein 1 light chain 3 and enhanced the degradation rate of long-lived proteins. TGF-β increased the mRNA expression levels of BECLIN1, ATG5, ATG7, and death-associated protein kinase (DAPK). Knockdown of Smad2/3, Smad4, or DAPK, or inhibition of c-Jun NH 2 -terminal kinase, attenuated TGF-β-induced autophagy, indicating the involvement of both Smad and non-Smad pathway(s). TGF-β activated autophagy earlier than execution of apoptosis (6-12 versus 48 h), and reduction of autophagy genes by small interfering RNA attenuated TGF-β-mediated growth inhibition and induction of proapoptotic genes Bim and Bmf, suggesting the contribution of autophagy pathway to the growth-inhibitory effect of TGF-β. Additionally, TGF-β also induced autophagy in some mammary carcinoma cells, including MDA-MB-231 cells. These findings show that TGF-β signaling pathway activates autophagy in certain human cancer cells and that induction of autophagy is a novel aspect of biological functions of TGF-β. [Cancer Res 2009;69(23):8844-52]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.