L-arginine causes insulin release from pancreatic B cells. Data from three model systems support the hypothesis that L-arginine-derived nitrogen oxides (NOs) mediate insulin release stimulated by L-arginine in the presence of D-glucose and by the hypoglycemic drug tolbutamide. The formation of NO in pancreatic B cells was detected both chemically and by the NO-induced accumulation of guanosine 3',5'-monophosphate. NG-substituted L-arginine analogs inhibited the release of both insulin and NO. Protein immunoblot and histochemical analysis with antiserum to type I NO synthase suggest that the formation of NO in pancreatic B cells is catalyzed by an NADPH- (reduced form of nicotinamide adenine dinucleotide phosphate), Ca2+/calmodulin-dependent type I NO synthase of about 150 kilodaltons.
Detailed characteristics of a new bioassay method for detection and quantification of endothelium-derived relaxing factor (EDRF) are described. Guanosine 3',5'-cyclic monophosphate (cGMP) responses of RFL-6 rat fetal lung fibroblast cells were utilized to estimate the activity of nitric oxide (NO) and EDRF. The conditioned medium from bovine aortic endothelial (BAE) cells cultured in tissue culture plates was quickly transferred to RFL-6 incubations to determine EDRF. In the presence of superoxide dismutase, RFL-6 cells cultured in six-well tissue culture plates exhibited very high sensitivities to both NO and EDRF; e.g., they responded to NO at a concentration as low as 2 nM and the basal release of EDRF from 1-2 X 10(6) BAE cells. Based on the lower detection limit of the radioimmunoassay for cGMP, calculations reveal that 100-200 fmol of NO and the basal EDRF release from 1-2 X 10(5) BAE cells can be detected with RFL-6 cells by choosing smaller culture wells. Thus this method is more sensitive than any other currently available. Furthermore, it may be widely used, since the instrumentation required is presently available in many laboratories. This bioassay technique for EDRF and NO is sensitive, simple, and quite useful for the evaluation of experimental conditions and compounds that regulate EDRF release from various endothelial cells and tissues.
Abstract. Increasing evidence suggests that the complex interactions among multiple cell types including neuronal, glial, and vascular cells, are critical for maintaining adequate cerebral blood flow that is necessary for normal brain function and survival. The disturbance of these interactions contributes to the pathogenesis of central nervous system disorders such as stroke and Alzheimer's disease. The retina is part of the central nervous system, and the properties of vasculature in the retina are similar to those in the brain. The interactions among multiple cell types in the retina also play an important role in the maintenance of tissue homeostasis, and the impairment of interactions can contribute to the onset and/or progression of retinal diseases. In this review, we describe the neurovascular interactions in the retina and alternations of interactions in pathological conditions such as diabetic retinopathy and glaucoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.