Thirty‐two protein phosphatase (PPase) genes were identified in the genome nucleotide sequence of Saccharomyces cerevisiae. We constructed S. cerevisiae disruptants for each of the PPase genes and examined their growth under various conditions. The disruptants of six putative PPase genes, i.e. of YBR125c, YCR079w, YIL113w, YJR110w, YNR022c and YOR090c, were created for the first time in this study. The glc7, sit4 and cdc14 disruptants were lethal in our strain background. The remaining 29 PPase gene disruptants were viable at 30°C and 37°C, but only one disruptant, yvh1, showed intrinsic cold‐sensitive growth at 13°C. Transcription of the YVH1 gene was induced at 13°C, consistent with an idea that Yvh1p has a specific role for growth at a low temperature. The viable disruptants grew normally on nutrient medium containing sucrose, galactose, maltose or glycerol as carbon sources. The ppz1 disruptant was tolerant to NaCl and LiCl, while the cmp2 disruptant was sensitive to these salts, as reported previously, and none of the other viable PPase disruptants exhibited the salt sensitivity. When the viable disruptants were tested for sensitivity to drugs, i.e. benomyl, caffeine and hydroxyurea, ppz1 and ycr079w disruptants exhibited sensitivity to caffeine. Copyright © 1999 John Wiley & Sons, Ltd.
The hepatitis C virus (HCV) has a positive single-stranded RNA genome, and translation starts within the internal ribosome entry site (IRES) in a cap-independent manner. The IRES is well conserved among HCV subtypes and has a unique structure consisting of four domains. We used an in vitro selection procedure to isolate RNA aptamers capable of binding to the IRES domains III–IV. The aptamers that were obtained shared the consensus sequence ACCCA, which is complementary to the apical loop of domain IIId that is known to be a critical region of IRES-dependent translation. This convergence suggests that domain IIId is preferentially selected in an RNA–RNA interaction. Mutation analysis showed that the aptamer binding was sequence and structure dependent. One of the aptamers inhibited translation both in vitro and in vivo. Our results indicate that domain IIId is a suitable target site for HCV blockage and that rationally designed RNA aptamers have great potential as anti-HCV drugs.
Mammalian transcriptome analysis has uncovered tens of thousands of novel transcripts of unknown function (TUFs). Classical and recent examples suggest that the majority of TUFs may underlie vital intracellular functions as non-coding RNAs because of their low coding potentials. However, only a portion of TUFs have been studied to date, and the functional significance of TUFs remains mostly uncharacterized. To increase the repertoire of functional TUFs, we screened for TUFs whose expression is controlled during differentiation of pluripotent human mesenchymal stem cells (hMSCs). The resulting six TUFs, named transcripts related to hMSC differentiation (TMDs), displayed distinct transcriptional kinetics during hMSC adipogenesis and/or osteogenesis. Structural and comparative genomic characterization suggested a wide variety of biologically active structures of these TMDs, including a long nuclear non-coding RNA, a microRNA host gene and a novel small protein gene. Moreover, the transcriptional response to established pathway activators indicated that most of these TMDs were transcriptionally regulated by each of the two key pathways for hMSC differentiation: the Wnt and protein kinase A (PKA) signaling pathways. The present study suggests that not only TMDs but also other human TUFs may in general participate in vital cellular functions with different molecular mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.