ERK MAP kinase signaling plays a pivotal role in diverse cellular functions, including cell proliferation, differentiation, migration and survival. One of the central questions concerning this signaling is how activation of the same protein kinase, ERK, elicits distinct cellular outcomes. Recent progress has demonstrated that differences in the duration, magnitude and subcellular compartmentalization of ERK activity generate variations in signaling output that regulate cell fate decisions. Furthermore, several molecules have been identified as spatial, temporal or strength-controlling regulators of ERK activity. Signaling by various extracellular stimuli thus could be modulated by these regulators to give qualitative and quantitative differences in ERK activity, which are then interpreted by the cells as determinants for appropriate responses.
The sense of smell allows chemicals to be perceived as diverse scents. We used single neuron RNA-Sequencing (RNA-Seq) to explore developmental mechanisms that shape this ability as nasal olfactory neurons mature in mice. Most mature neurons expressed only one of the roughly 1000 odorant receptor genes (Olfrs) available, and that at high levels. However, many immature neurons expressed low levels of multiple Olfrs. Coexpressed Olfrs localized to overlapping zones of the nasal epithelium, suggesting regional biases, but not to single genomic loci. A single immature neuron could express Olfrs from up to seven different chromosomes. The mature state in which expression of Olfr genes is restricted to one per neuron emerges over a developmental progression that appears independent of neuronal activity requiring sensory transduction molecules.
MAP kinase phosphatases (MKPs) catalyze dephosphorylation of activated MAP kinase (MAPK) molecules and deactivate them. Therefore, MKPs play an important role in determining the magnitude and duration of MAPK activities. MKPs constitute a structurally distinct family of dual-specificity phosphatases. The MKP family members share the sequence homology and the preference for MAPK molecules, but they are different in substrate specificity among MAPK molecules, tissue distribution, subcellular localization and inducibility by extracellular stimuli. Our understanding of their protein structure, substrate recognition mechanisms, and regulatory mechanisms of the enzymatic activity has greatly increased over the past few years. Furthermore, although there are a number of MKPs, that have similar substrate specificities, non-redundant roles of MKPs have begun to be identified. Here we focus on recent findings regarding regulation and function of the MKP family members as physiological regulators of MAPK signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.