Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics.
ClC-3 is a highly conserved voltage-gated chloride channel, which together with ClC-4 and ClC-5 belongs to one subfamily of the larger group of ClC chloride channels. Whereas ClC-5 is localized intracellularly, ClC-3 has been reported to be a swelling-activated plasma membrane channel. However, recent studies have shown that native ClC-3 in hepatocytes is primarily intracellular. Therefore, we reexamined the properties of ClC-3 in a mammalian cell expression system and compared them with the properties of endogenous swellingactivated channels. Chinese hamster ovary (CHO)-K1 cells were transiently transfected with rat ClC-3. The resulting chloride currents were Cl ؊ > I ؊ selective, showed extreme outward rectification, and lacked inactivation at positive voltages. In addition, they were insensitive to the chloride channel blockers, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS) and were not inhibited by phorbol esters or activated by osmotic swelling. These properties are identical to those of ClC-5 but differ from those previously attributed to ClC-3. In contrast, nontransfected CHO-K1 cells displayed an endogenous swelling-activated chloride current, which was weakly outward rectifying, inactivated at positive voltages, sensitive to NPPB and DIDS, and inhibited by phorbol esters. These properties are identical to those previously attributed to ClC-3. Therefore, we conclude that when expressed in CHO-K1 cells, ClC-3 is an extremely outward rectifying channel with similar properties to ClC-5 and is neither activated by cell swelling nor identical to the endogenous swelling-activated channel. These data suggest that ClC-3 cannot be responsible for the swelling-activated chloride channel under all circumstances.
The molecular identities of functional chloride channels in hepatocytes are largely unknown. We examined the ClC-3 chloride channel in rat hepatocytes and found that mRNA for two different isoforms is present. A short form is identical to the previously reported sequence for rat ClC-3, and a long form contains a 176-bp insertion immediately upstream of the translation initiation site. This predicts a 58-amino acid NH(2) terminal insertion. Both long and short form mRNA was expressed in diverse tissues of the rat. Transient transfection of the long form in CHO-K1 cells resulted in currents with an I(-) > B(-) > Cl(-) selectivity sequence, outward rectification, and inactivation at positive voltages. Short form currents had identical ionic selectivity but displayed a more extreme outward rectification and showed no voltage-dependent inactivation. Immunofluorescence and immunoblots localized native ClC-3 preferentially but not exclusively to the canalicular membrane. We have therefore identified a new isoform of rat ClC-3 and shown that expression of both isoforms produces functional channels. In hepatocytes, ClC-3 is located in association with the canalicular membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.