Among the several heterocyclic compounds, nitrogen and oxygen are predominant heterocycles due to their abundant biological importance. The nanoparticles have demonstrated the excellent catalytic activity under optimum conditions with higher reusability or recyclability and higher yields of synthetic heterocyclic targets. Previously we reviewed the synthesis of aza- and oxa-heterocycles catalyzed by metal nanoparticles (MNPs) in 2009-2019 and published an update of such reports of 2020 on the same subject. With anticipations to the next, the present comprehensive work highlights the synthesis of aza- and oxa-heterocycles catalyzed by MNPs reported during the year, 2021 to update the reader of the present work with the most recent trends in selection of MNPs in the synthesis of desired heterocyclic scaffolds.
Due to alarming outbreak of pandemic COVID‐19 in recent times, there is a strong need to discover and identify new antiviral agents acting against SARS CoV‐2. Among natural products, lignan derivatives have been found effective against several viral strains including SARS CoV‐2. Total of twenty‐seven reported antiviral lignan derivatives of plant origin have been selected for computational studies to identify the potent inhibitors of SARS CoV‐2. Molecular docking study has been carried out in order to predict and describe molecular interaction between active site of enzyme and lignan derivatives. Out of identified hits, clemastatin B and erythro‐strebluslignanol G demonstrated stronger binding and high affinity with all selected proteins. Molecular dynamics simulation studies of clemastin B and savinin against promising targets of SARS CoV‐2 have revealed their inhibitory potential against SARS CoV‐2. In fine, in‐silico computational studies have provided initial breakthrough in design and discovery of potential SARS CoV‐2 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.