The extracellular signals which regulate the myogenic program are transduced to the nucleus by mitogenactivated protein kinases (MAPKs). We have investigated the role of two MAPKs, p38 and extracellular signal-regulated kinase (ERK), whose activities undergo significant changes during muscle differentiation. p38 is rapidly activated in myocytes induced to differentiate. This activation differs from those triggered by stress and cytokines, because it is not linked to Jun-N-terminal kinase stimulation and is maintained during the whole process of myotube formation. Moreover, p38 activation is independent of a parallel promyogenic pathway stimulated by insulin-like growth factor 1. Inhibition of p38 prevents the differentiation program in myogenic cell lines and human primary myocytes. Conversely, deliberate activation of endogenous p38 stimulates muscle differentiation even in the presence of antimyogenic cues. Much evidence indicates that p38 is an activator of MyoD: (i) p38 kinase activity is required for the expression of MyoD-responsive genes, (ii) enforced induction of p38 stimulates the transcriptional activity of a Gal4-MyoD fusion protein and allows efficient activation of chromatin-integrated reporters by MyoD, and (iii) MyoD-dependent myogenic conversion is reduced in mouse embryonic fibroblasts derived from p38␣ ؊/؊ embryos. Activation of p38 also enhances the transcriptional activities of myocyte enhancer binding factor 2A (MEF2A) and MEF2C by direct phosphorylation. With MEF2C, selective phosphorylation of one residue (Thr293) is a tissue-specific activating signal in differentiating myocytes. Finally, ERK shows a biphasic activation profile, with peaks of activity in undifferentiated myoblasts and postmitotic myotubes. Importantly, activation of ERK is inhibitory toward myogenic transcription in myoblasts but contributes to the activation of myogenic transcription and regulates postmitotic responses (i.e., hypertrophic growth) in myotubes.In the past decade, much has been learned about the molecular mechanisms that govern myogenesis owing mainly to the discovery of two groups of myogenic transcription factors (4,45,62). The first group includes the myogenic regulatory factors (MRFs), which belong to the basic helix-loop-helix (bHLH) protein family. This MRF group consists of four members: Myf5, MyoD, myogenin, and MRF4, all of which are specifically expressed in skeletal muscles. One of the unique features of these MRFs is that when they are ectopically expressed in fibroblasts or certain other nonmuscle cells, each has the ability to initiate the myogenic program and convert nonmuscle cells to myogenic derivatives (9, 59). Myogenic bHLH proteins heterodimerize with other ubiquitous bHLH proteins (like the E2A gene products, E12, and E47) to efficiently bind a consensus DNA site: CANNTG (also called the E box) (4, 33). The second group of transcription factors important in muscle differentiation consists of four different myocyte enhancer binding factor 2 (MEF2) proteins, which belong to the MADS box...
Cell-cycle checkpoints help to protect the genomes of proliferating cells under genotoxic stress. In multicellular organisms, cell proliferation is often directed toward differentiation during development and throughout adult homeostasis. To prevent the formation of differentiated cells with genetic instability, we hypothesized that genotoxic stress may trigger a differentiation checkpoint. Here we show that exposure to genotoxic agents causes a reversible inhibition of myogenic differentiation. Muscle-specific gene expression is suppressed by DNA-damaging agents if applied prior to differentiation induction but not after the differentiation program is established. The myogenic determination factor, MyoD (encoded by Myod1), is a target of the differentiation checkpoint in myoblasts. The inhibition of MyoD by DNA damage requires a functional c-Abl tyrosine kinase (encoded by Abl1), but occurs in cells deficient for p53 (transformation-related protein 53, encoded by Trp53) or c-Jun (encoded by the oncogene Jun). These results support the idea that genotoxic stress can regulate differentiation, and identify a new biological function for DNA damage-activated signaling network.
Rhabdomyosarcoma is a common malignancy in children. There are two major types of rhabdomyosarcomas, the embryonal and the alveolar, differing in cytogenetic and morphologic features. The alveolar type of rhabdomyosarcoma is frequently associated with chromosome translocation t(2; 13) and poor clinical prognosis. Pathogenesis of rhabdomyosarcoma remains obscure, and especially it occurs in the location where skeletal muscle is absent. We report here that there is a high frequency of association of rhabdomyosarcoma with ataxia telangiectasia mutated (ATM) gene mutation/deletion. Totally 17 cases of rhabdomyosarcoma specimens were studied by immunohistochemical or immunofluorescent staining with ATM antibody and revealed that 7 of the 17 cases were negative for ATM expression (41%). Further analyses of rhabdomyosarcoma cell lines with RT-PCR revealed that in Rh30 cells, an alveolar rhabdomyosarcoma cell line, there are three separate deletions/mutations of the ATM mRNA. Western blotting analysis of the Rh30 cellular extract with anti-ATM antibody showed that there is an aberrant form of ATM protein within the Rh30 cells that are smaller than normal control. These results suggest, for the first time, a link of ATM gene deletion/mutation with rhabdomyosarcoma, and since ATM kinase is a crucial regulatory protein in DNA damage repair signaling pathway, and ATM deletion/mutation may contribute to pathogenesis of rhabdomyosarcoma.
MyoD inhibits cell proliferation and promotes muscle differentiation. A paradoxical feature of rhabdomyosarcoma (RMS), a tumor arising from muscle precursors, is the block of the differentiation program and the deregulated proliferation despite MyoD expression. A deficiency in RMS of a factor required for MyoD activity has been implicated by previous studies. We report here that p38 MAP kinase (MAPK) activation, which is essential for muscle differentiation, is deficient in RMS cells. Enforced induction of p38 MAPK by an activated MAPK kinase 6 (MKK6EE) restored MyoD function and enhanced MEF2 activity in RMS deficient for p38 MAPK activation, leading to growth arrest and terminal differentiation. Stress and cytokines could activate the p38 MAPK in RMS cells, however, these stimuli did not promote differentiation, possibly because they activated p38 MAPK only transiently and they also activated JNK, which could antagonize differentiation. Thus, the selective and sustained p38 MAPK activation, which is distinct from the stress-activated response, is required for differentiation and can be disrupted in human tumors.
BackgroundRhabdomyosarcoma is a common malignancy in children. There are two major types of rhabdomyosarcomas, the embryonal and the alveolar, differing in cytogenetic and morphologic features. The alveolar type of rhabdomyosarcoma is frequently associated with chromosome translocation t(2, 13) and poor clinical prognosis. Pathogenesis of rhabdomyosarcoma remains obscure, and especially it occurs in the location where skeletal muscle is absent. We report here that there is a high frequency of association of rhabdomyosarcoma with ataxia telangiectasia mutated (ATM) gene mutation/deletion.ResultTotally 17 cases of rhabdomyosarcoma specimens were studied by immunohistochemical or immunofluorescent staining with ATM antibody and revealed that 7 of the 17 cases were negative for ATM expression (41%). Further analyses of rhabdomyosarcoma cell lines with RT-PCR revealed that in Rh30 cells, an alveolar rhabdomyosarcoma cell line, there are three separate deletions/mutations of the ATM mRNA. Western blotting analysis of the Rh30 cellular extract with anti-ATM antibody showed that there is an aberrant form of ATM protein within the Rh30 cells that are smaller than normal control.ConclusionThese results suggest a link of ATM gene deletion/mutation with rhabdomyosarcoma, and since ATM kinase is a crucial regulatory protein in DNA damage repair signaling pathway, and ATM deletion/mutation may contribute to pathogenesis of rhabdomyosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.