Forest aboveground biomass (AGB) is an important indicator for characterizing forest ecosystem structures and functions. Therefore, how to effectively investigate forest AGB is a vital mission. Airborne laser scanning (ALS) has been demonstrated as an effective way to support investigation and operational applications among a wide range of applications in the forest inventory. Moreover, three-dimensional structure information relating to AGB can be acquired by airborne laser scanning. Many studies estimated AGB from variables that were extracted from point cloud data, but few of them took full advantage of variables related to tree crowns to estimate the AGB. In this study, the main objective was to evaluate and compare the capabilities of different metrics derived from point clouds obtained from ALS. Particularly, individual tree-based alpha-shape, along with other traditional and commonly used plot-level height and intensity metrics, have been used from airborne laser scanning data. We took the random forest and multiple stepwise linear regression to estimate the AGB. By comparing AGB estimates with field measurements, our results showed that the best approach is mixed metrics, and the best estimation model is random forest (R2 = 0.713, RMSE = 21.064 t/ha, MAE = 15.445 t/ha), which indicates that alpha-shape may be a good alternative method to improve AGB estimation accuracy. This method provides an effective solution for estimating aboveground biomass from airborne laser scanning.
One of the main initiatives for China to achieve the goal of being carbon neutral before 2060 is transforming monocultures into mixed plantations in subtropical China, because mixed forests possess a higher quality than monocultures in various ways. Very high spatial resolution (VHR) satellite imagery is very promising to precisely monitor the transformation process under the premise of clarifying the canopy reflectance anisotropy of mixed plantations. However, it is almost impossible to understand the canopy reflectance anisotropy of mixed plantations with real satellite data due to the extreme lack of multiangular VHR satellite images. In this study, the effects of the mixture mode on the canopy bidirectional reflectance factor (BRF) were comprehensively analyzed with simulated VHR images. The three-dimensional (3D) Discrete Anisotropic Radiative Transfer model (DART) was used to construct a pure coniferous scene, a pure broadleaved scene, and 27 coniferous–broadleaved mixed plantation scenes containing 3 mixture patterns (i.e., mixed by single trees, mixed by stripes, and mixed by patches) and 9 mixing proportions (i.e., from 10% to 90% with the interval of 10%), and to simulate red (R) and near-infrared (NIR) VHR images for these 3D scenes at both the solar principal plane (SPP) and perpendicular plane (PP) under different solar-viewing geometries. Negative correlations were generally found between the canopy BRF and the ratio of conifers in a mixed stand. The anisotropy of conifer dominated plantations is more prominent than broadleaf dominated plantations, especially for the single tree mixture. Although the level of anisotropy is much lower for PP than SPP, it should not be ignored, especially for the R band. Observations under large viewing zenith angles at PP are more preferred to study the effect of mixing proportions, followed by forward observations at SPP. The R band image has higher potential to distinguish mixture patterns for broadleaf-dominated situations, while the NIR band image has a higher potential for conifer-dominated situations. Furthermore, the canopy BRF generally increases with the solar zenith angle, and one meter can be considered as the optimal spatial resolution for the optical monitoring of the mixture mode. The findings of the current study add some valuable theoretical knowledge for the accurate monitoring of coniferous–broadleaved mixed plantations with VHR imagery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.