Condition monitoring can improve the reliability of wind turbines, which can effectively reduce operation and maintenance costs. The temperature prediction model of wind turbine gearbox components is of great significance for monitoring the operation status of the gearbox. However, the complex operating conditions of wind turbines pose grand challenges to predict the temperature of gearbox components. In this study, an online hybrid model based on a long short term memory (LSTM) neural network and adaptive error correction (LSTM-AEC) using simple-variable data is proposed. In the proposed model, a more suitable deep learning approach for time series, LSTM algorithm, is applied to realize the preliminary prediction of temperature, which has a stronger ability to capture the non-stationary and non-linear characteristics of gearbox components temperature series. In order to enhance the performance of the LSTM prediction model, the adaptive error correction model based on the variational mode decomposition (VMD) algorithm is developed, where the VMD algorithm can effectively solve the prediction difficulty issue caused by the non-stationary, high-frequency and chaotic characteristics of error series. To apply the hybrid model to the online prediction process, a real-time rolling data decomposition process based on VMD algorithm is proposed. With aims to validate the effectiveness of the hybrid model proposed in this paper, several traditional models are introduced for comparative analysis. The experimental results show that the hybrid model has better prediction performance than other comparative models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.