The increased number of carrier pockets near the Fermi level and the optimized carrier concentration in doped SnSe single crystal can lead to a high averageZTave∼ 1.2 from 300 K to 800 K and a peakZTmaxvalue in excess of 2.0 at 800 K along the crystallographicb-axis.
Due to fundamental interest and potential applications in quantum computation, tremendous efforts have been invested to study topological superconductivity. However, bulk topological superconductivity seems to be difficult to realize and its mechanism is still elusive. Several possible routes to induce topological superconductivity have been proposed, including proximity efforts, doping or pressurizing a topological insulator or semimetal. Among them, the pressurizing is considered to be a "clean" way to tune the electronic structures. Here we report the discovery of a pressure-induced topological and superconducting phase of SnSe, a material which is highly focused recently due to its superior thermoelectric properties. In situ highpressure electrical transport and synchrotron X-ray diffraction measurements show that the superconductivity emerges along with the formation of a CsCl-type structural symmetry of SnSe above around 27 GPa, with a maximum critical temperature of 3.2 K at 39 GPa. Based on ab initio calculations, this CsCl-type SnSe is predicted to be a Dirac line nodes (DLN) semimetal in the absence of spin-orbit coupling, whose DLN states are protected by the coexistence of timereversal and inversion symmetries. These results make CsCl-type SnSe an interesting model platform with simple crystal symmetry to study the interplay of topological physics and superconductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.