Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter systems and help to tailor the ultimate properties of polymeric materials. Concerning the crystallization process, flow can accelerate the kinetics by orders of magnitude and induce the formation of oriented crystallites like shish-kebab, which are associated with the major influences of flow on nucleation, that is, raised nucleation density and oriented nuclei. The topic of FIC has been studied for more than half a century. Recently, there have been many developments in experimental approaches, such as synchrotron radiation X-ray scattering, ultrafast X-ray detectors with a time resolution down to the order of milliseconds, and novel laboratory devices to mimic the severe flow field close to real processing conditions. By a combination of these advanced methods, the evolution process of FIC can be revealed more precisely (with higher time resolution and on more length scales) and quantitatively. The new findings are challenging the classical interpretations and theories that were mostly derived from quiescent or mild-flow conditions, and they are triggering the reconsideration of FIC foundations. This review mainly summarizes experimental results, advances in physical understanding, and discussions on the multiscale and multistep nature of oriented nuclei induced by strong flow. The multiscale structures include segmental conformation, packing of conformational ordering, deformation on the whole-chain scale, and macroscopic aggregation of crystallites. The multistep process involves conformation transition, isotropic-nematic transition, density fluctuation (or phase separation), formation of precursors, and shish-kebab crystallites, which are possible ordering processes during nucleation. Furthermore, some theoretical progress and modeling efforts are also included.
Deformation induced crystal–crystal transition
of polybutene-1 (PB-1) from forms II to I at different temperatures
is studied with in situ synchrotron radiation wide-angle X-ray scattering
(WAXS). Analyses on the evolution of crystallinity and orientations
of forms II and I during tensile deformation show that stretch accelerates
the transformation from forms II to I, which is interpreted based
on either a direct crystal–crystal transition or an indirect
approach via an intermediate state of melt, namely a melting recrystallization
process. A three-stage mechanical deformation including linear deformation,
stress plateau, and strain hardening is observed in the engineering
stress–strain curves, which corresponds to a process of incubation,
nucleation, and gelation of form I crystals. It establishes a nice
correlation between phase transition and mechanical behavior in this
study.
Load-bearing biological tissues, such as muscles, are highly fatigue-resistant, but how the exquisite hierarchical structures of biological tissues contribute to their excellent fatigue resistance is not well understood. In this work, we study antifatigue properties of soft materials with hierarchical structures using polyampholyte hydrogels (PA gels) as a simple model system. PA gels are tough and self-healing, consisting of reversible ionic bonds at the 1-nm scale, a cross-linked polymer network at the 10-nm scale, and bicontinuous hard/soft phase networks at the 100-nm scale. We find that the polymer network at the 10-nm scale determines the threshold of energy release rateG0above which the crack grows, while the bicontinuous phase networks at the 100-nm scale significantly decelerate the crack advance until a transitionGtranfar aboveG0. In situ small-angle X-ray scattering analysis reveals that the hard phase network suppresses the crack advance to show decelerated fatigue fracture, andGtrancorresponds to the rupture of the hard phase network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.