Nanograined metals have the merit of high strength, but usually suffer from low work hardening capacity and poor thermal stability, causing premature failure and limiting their practical utilities. Here we report a “nanodispersion-in-nanograins” strategy to simultaneously strengthen and stabilize nanocrystalline metals such as copper and nickel. Our strategy relies on a uniform dispersion of extremely fine sized carbon nanoparticles (2.6 ± 1.2 nm) inside nanograins. The intragranular dispersion of nanoparticles not only elevates the strength of already-strong nanograins by 35%, but also activates multiple hardening mechanisms via dislocation-nanoparticle interactions, leading to improved work hardening and large tensile ductility. In addition, these finely dispersed nanoparticles result in substantially enhanced thermal stability and electrical conductivity in metal nanocomposites. Our results demonstrate the concurrent improvement of several mutually exclusive properties in metals including strength-ductility, strength-thermal stability, and strength-electrical conductivity, and thus represent a promising route to engineering high-performance nanostructured materials.
Nanostructured metals are a promising class of radiation-tolerant materials. A large volume fraction of grain boundaries (GBs) can provide plenty of sinks for radiation damage, and understanding the underlying healing mechanisms is key to developing more effective radiation tolerant materials. Here, we observe radiation damage absorption by stress-assisted GB migration in ultrafine-grained Au thin films using a quantitative in situ transmission electron microscopy nanomechanical testing technique. We show that the GB migration rate is significantly higher in the unirradiated specimens. This behavior is attributed to the presence of smaller grains in the unirradiated specimens that are nearly absent in the irradiated specimens. Our experimental results also suggest that the GB mobility is decreased as a result of irradiation. This work implies that the deleterious effects of irradiation can be reduced by an evolving network of migrating GBs under stress.
Additively manufactured (AM) metallic materials often comprise as-printed dislocation cells inside grains. These dislocation cells can give rise to substantial microscale internal stresses in both initial undeformed and plastically deformed samples, thereby affecting the mechanical properties of AM metallic materials. Here we develop models of microscale internal stresses in AM stainless steel by focusing on their back stress components. Three sources of microscale back stresses are considered, including the printing and deformation-induced back stresses associated with as-printed dislocation cells as well as the deformation-induced back stresses associated with grain boundaries. We use a three-dimensional discrete dislocation dynamics model to demonstrate the manifestation of printing-induced back stresses. We adopt a dislocation pile-up model to evaluate the deformation-induced back stresses associated with as-printed dislocation cells. The extracted back stress relation from the pile-up model is incorporated into a crystal plasticity model that accounts for the other two sources of back stresses as well. The crystal plasticity finite element simulation results agree with the experimentally measured tension-compression asymmetry and macroscopic back stress, the latter of which represents the effective resultant of microscale back stresses of different origins. Our results provide an in-depth understanding of the origins and evolution of microscale internal stresses in AM metallic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.