This paper first defines a hidden Markov linear regression model for the purpose of further studying the mutual transformation between different states in the linear regression model, and the regression relationship between the dependent variable and the independent variable in each state. And then, K-means clustering analysis methods are used to identify the hidden states of observed data, and the maximum likelihood estimation of the hidden state transition probability matrix elements is obtained by using the maximum likelihood estimation method, and parameter estimation of unknown parameters in linear regression model is also presented by using the least squares method. Finally, the observation vector set is generated according to the defined model, and the empirical simulation demonstrates that the parameter estimation method shown in this work is reliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.