Abstract:The main purpose of this paper is to study the zero-divisor graph for direct product of finite commutative rings. In our present investigation we discuss the zero-divisor graphs for the following direct products: direct product of the ring of integers under addition and multiplication modulo p and the ring of integers under addition and multiplication modulo p 2 for a prime number p, direct product of the ring of integers under addition and multiplication modulo p and the ring of integers under addition and multiplication modulo 2p for an odd prime number p and direct product of the ring of integers under addition and multiplication modulo p and the ring of integers under addition and multiplication modulo p 2 -2 for that odd prime p for which p 2 -2 is a prime number. The aim of this paper is to give some new ideas about the neighborhood, the neighborhood number and the adjacency matrix corresponding to zero-divisor graphs for the above mentioned direct products. Finally, we prove some results of annihilators on zerodivisor graph for direct product of A and B for any two commutative rings A and B with unity
Let be a commutative ring. The prime graph of the ring is defined as a graph whose vertex set consists of all elements of and any two distinct vertices x and y are adjacent if and only if or . This graph is denoted by . In this paper we investigate some relations between the chromatic number of prime graph of finite product of commutative rings and the chromatic number of prime graph of these rings. We also obtain some results on the chromatic number of prime graph of the ring .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.