Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.
Modern seafood processing practices result in amassment of a large volume of waste products, i.e., skin, head, tails, shells, scales, backbones, etc. These waste products may often encompass several high-value products which are still untapped due to the dearth of appropriate management. Moreover, inadequate disposal of waste also has negative implications on both environment and human health. This seafood waste often contains a huge amount of chitin, a polysaccharide that exhibits exceptional inherent characteristics including biocompatibility, biodegradability, antimicrobial, antitumor and antioxidant activities. The present review summarizes the existing methods for recovery of chitin and its derivatives from marine waste. The preparation of chitin nanoparticles was discussed along with blending of chitin and chitosan with other biopolymers. The recent trends of the application of chitin and chitosan nanostructures in various sectors were explored. This review is an attempt to highlight the extraction methods of chitin and chitosan from marine waste resources and its transformation into valuable commercial products as a solution to waste management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.