Aim: We aimed to identify the roles of circRHOT1 in pancreatic cancer. Materials & methods: The circRHOT1 was acquired from our previous study followed by quantitative real-time PCR and fluorescence in situ hybridization validation in pancreatic cancer. We used siRNA and shRNA to explore the function of circRHOT1 in pancreatic cancer cells. Bioinformatic analyses were applied to study the potential mechanism of circRHOT1. Results: The circRHOT1 was upregulated in pancreatic cancer and predominantly located in the cytoplasm. Reducing the circRHOT1 expression may inhibit the pancreatic cancer cell proliferation, invasion and migration. The circRHOT1 may play a role in pancreatic cancer through binding miR-26b, miR-125a, miR-330 and miR-382 to regulate multiple tumor-associated pathways. Conclusion: This study demonstrated that circRHOT1 may serve as an oncogenic circRNA that promotes tumor progression.
Hepatocellular carcinoma (HCC) is the malignancy derived from normal hepatocytes with increasing incidence and extremely poor prognosis worldwide. The only approved first‐line systematic treatment agent for HCC, sorafenib, is capable to effectively improve advanced HCC patients’ survival. However, it is gradually recognized that the therapeutic response to sorafenib could be drastically diminished after short‐term treatment, defined as primary resistance. The present study is aimed to explore the role of stress‐inducible protein Sestrin2 (SESN2), one of the most important sestrins family members, in sorafenib primary resistance. Herein, we initially found that SESN2 expression was significantly up‐regulated in both HCC cell lines and tissues compared to normal human hepatocytes and corresponding adjacent liver tissues, respectively. In addition, SESN2 expression was highly correlated with sorafenib IC50 of HCC cell lines. Thereafter, we showed that sorafenib treatment resulted in an increase of SESN2 expression and the knockdown of SESN2 exacerbated sorafenib‐induced proliferation inhibition and cell apoptosis. Further mechanistic study uncovered that SESN2 deficiency impaired both AKT and AMPK phosphorylation and activation after sorafenib treatment. Moreover, the correlations between SESN2 expression and both phosphor‐AKT and phosphor‐AMPK expression were illustrated in HCC tissues. Taken together, our study demonstrates that SESN2 activates AKT and AMPK signaling as a novel mechanism to induce sorafenib primary resistance in HCC.
BAP31 is a ubiquitously expressed endoplasmic reticulum (ER) membrane protein. The functions of BAP31 in the immune system have not been investigated due to the lack of animal models. Therefore we created a BAP31 conditional knockdown mouse by performing a knockdown of BAP31 in the thymus. In doing so, we demonstrate that the maturation of T cells is normal but the number of T cells is less in the thymus of the knockout mouse. In addition, the spleen and lymph nodes of peripheral immune organs contained a lesser proportion of the mature T cells in the thymus specific BAP31 knockout mice. The BAP31 knockout T cells decreased the proliferation activated by TCR signal pathways. Further studies clarified that BAP31 affects the phosphorylation levels of both Zap70/Lck/Lat of the upstream members and Akt/GSK/Jnk/Erk of the downstream members of TCR signal pathways. Furthermore, BAP31 can regulate the expression of some markers such as CD3/TCRα/TCRβ and some cytokines like IL-2/IFN-γ/IL-6/TNF-α which are important for T cell activation. Taken together, these results demonstrate that BAP31 may play an important role in T cell activation by regulating TCR signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.