This study proposes a multi-mode switching longitudinal autonomous driving system based on model predictive control (MPC) with acceleration estimation of proceeding vehicle. A hierarchical control framework composed of three layers is utilised. In the first layer, five longitudinal driving scenarios are defined based on emergency degree. In the second layer, the MPC for longitudinal autonomous driving is designed and serving as the upper controller. Among which a non-linear tracking differentiator is used for acceleration estimation of preceding vehicle. In the third layer, the inverse longitudinal vehicle system dynamic model with strong non-linearity is considered in the lower controller. Proportional-integral-derivative feedback and feedforward control are combined to track the desired acceleration. Simulation and hardware-in-loop test results show that the multi-mode switching longitudinal autonomous driving system is feasible and effective, and has important value for engineering application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.