The decay of lithium–sulfur (Li–S) batteries is mainly due to the shuttle effect caused by intermediate polysulfides (LiPSs). Herein, a multiple confined cathode architecture is prepared by filling graphitized Pinus sylvestris with carbon nanotubes and defective LaNiO3−x (LNO‐V) nanoparticles. The composite electrode with high areal sulfur loading of 11.6 mg cm−2 shows a high areal specific capacity of 8.5 mAh cm−2 at 1 mA cm−2 (0.05 C). Both experimental results and theoretical calculations reveal that this unique structure not only provides physical restriction on LiPSs within microchannels but also offers strong chemical immobilization and catalytic conversion of LiPSs attributed to the spin density around oxygen vacancies of LaNiO3−x. These oxygen vacancies elongate the SS and LiS bonds and make them easy to break. Furthermore, the lengthwise channels derived from cytoderm restrict the transverse diffusion of polysulfides, leading to a uniform areal current and thus homogeneous lithium infiltration. This suppresses the corrosion of the lithium anode due to polysulfides confinement. The discovery of the multiple confined structure that provides chemical adsorption, fast diffusion, and catalytic conversion for polysulfides can broaden the application of biomass materials and offer a new strategy to achieve robust Li–S batteries.
The design and manufacture of advanced materials based on biomaterials provide new opportunities to solve many technological challenges. In this work, a highly graphitized wood framework (GWF) with a porous tunnel structure and microvilli is constructed as a multifunctional interlayer to improve the electrochemical performance of lithium–sulfur (Li–S) batteries. The GWF not only retains the 3D transport network of wood, but also offers increased deposition sites for polysulfides through the microvilli which grow on the inner surfaces of the carbon tunnels. Electrochemical tests show that GWF effectively enhances the initial discharge capacity of the Li–S battery to 1593 mAh g−1 at 0.05 C, with a low capacity decline of 0.06% per cycle at 1 C. Besides, the GWF interlayer also effectively protects lithium anodes from corrosion by Sx2−, thus they still keep their metallic luster and clean surface even after long charge‐discharge cycles. These enhancements are attributed to the high conductivity, abundant microvilli, and tunnel confinement effects of GWF, which effectively inhibit the shuttle effect of polysulfides by the same principle as nose hairs filtering the air. This work presents a new understanding of bionic/biomaterials and a new strategy to improve the performance of Li–S batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.