Unique insights for the reprograming of cell lineages have come from embryonic development in the ascidian Ciona, which is dependent upon the transcription factors Ci-ets1/2 and Ci-mesp to generate cardiac progenitors. We tested the idea that mammalian v-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) and mesoderm posterior (MESP) homolog may be used to convert human dermal fibroblasts into cardiac progenitors. Here we show that murine ETS2 has a critical role in directing cardiac progenitors during cardiopoiesis in embryonic stem cells. We then use lentivirus-mediated forced expression of human ETS2 to convert normal human dermal fibroblasts into replicative cells expressing the cardiac mesoderm marker KDR + . However, although neither ETS2 nor the purported cardiac master regulator MESP1 can by themselves generate cardiac progenitors de novo from fibroblasts, forced coexpression of ETS2 and MESP1 or cell treatment with purified proteins reprograms fibroblasts into cardiac progenitors, as shown by the de novo appearance of core cardiac transcription factors, Ca 2+ transients, and sarcomeres. Our data indicate that ETS2 and MESP1 play important roles in a genetic network that governs cardiopoiesis.cardiogenesis | fibroblast reprograming | protein transduction | kinetic imaging
Cancer remains a leading health threat in the United States, and cardiovascular drug toxicity is a primary cause to eliminate a drug from FDA approval. As a result, the demand to develop new anticancer drugs without cardiovascular toxicity is high. Human induced pluripotent stem (iPS) cell-derived tissue chips provide potentially a cost-effective preclinical drug testing platform, including potential avenues for personalized medicine. We have developed a three-dimensional microfluidic device that simultaneously cultures tumor cell spheroids with iPS-derived cardiomyocytes (iPS-CMs) and iPS-derived endothelial cells (iPS-EC). The iPSderived cells include a GCaMP6 fluorescence reporter to allow real-time imaging to monitor intracellular calcium transients. The multiple-chambered tissue chip features electrodes for pacing of the cardiac tissue to assess cardiomyocyte function such as the maximum capture rate and conduction velocity. We measured the inhibition concentration (IC 50 ) of the anticancer drugs, Doxorubicin (0.1 mM) and Oxaliplatin (4.2 mM), on the tissue chip loaded with colon cancer cells (SW620). We simultaneously evaluated the cardiotoxicity of these anticancer drugs by assessing the drug effect on the spontaneous beat frequency and conduction velocity of iPSderived cardiac tissue. Consistent with in vivo observations, Doxorubicin reduced the spontaneous beating rate and maximum capture rate at or near the IC 50 (0.04 and 0.22 mM, respectively), whereas the toxicity of Oxaliplatin was only observed at concentrations beyond the IC 50 (33 and 9.9 mM, respectively). Our platform demonstrates the feasibility to simultaneously assess cardiac toxicity and antitumor effects of drugs and could be used to enhance personalized drug testing safety and efficacy.
MESP1 is considered the first sign of the nascent cardiac mesoderm and plays a critical role in the appearance of cardiac progenitors, while exhibiting a transient expression in the developing embryo. We profiled the transcriptome of a pure population of differentiating MESP1-marked cells and found that they chiefly contribute to the mesendoderm lineage. High-throughput sequencing of endogenous MESP1-bound DNA revealed that MESP1 preferentially binds to two variants of E-box sequences and activates critical mesendoderm modulators, including Eomes, Gata4, Wnt5a, Wnt5b, Mixl1, T, Gsc, and Wnt3. These mesendoderm markers were enriched in the MESP1 marked population before the appearance of cardiac progenitors and myocytes. Further, MESP1-binding is globally associated with H(3)K(27) acetylation, supporting a novel pivotal role of it in regulating target gene epigenetics. Therefore, MESP1, the pioneer cardiac factor, primarily directs the appearance of mesendoderm, the intermediary of the earliest progenitors of mesoderm and endoderm organogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.