The Solar Dynamics Observatory (SDO) aims to study the Sun's influence on the Earth by understanding the source, storage, and release of the solar energy, and the interior structure of the Sun. During science observations, the jitter stability at the instrument focal plane must be maintained to less than a fraction of an arcsecond for two of the SDO instruments. To meet these stringent requirements, a significant amount of analysis and test effort has been devoted to predicting the jitter induced from various disturbance sources. One of the largest disturbance sources onboard is the reaction wheel. This paper presents the SDO approach on reaction wheel disturbance modeling and jitter analysis. It describes the verification and calibration of the disturbance model, and ground tests performed for validating the reaction wheel jitter analysis. To mitigate the reaction wheel disturbance effects, the wheels will be limited to operate at low wheel speeds based on the current analysis. An on-orbit jitter test algorithm is also presented in the paper which will identify the true wheel speed limits in order to ensure that the wheel jitter requirements are met. Nomenclature
The Terrestrial Planet Finder Coronagraph is a visible-light coronagraph to detect planets that are orbiting within the Habitable Zone of stars. The coronagraph instrument must achieve a contrast ratio stability of 2e-11 in order to achieve planet detection. This places stringent requirements on several spacecraft subsystems, such as pointing stability and structural vibration of the instrument in the presence of mechanical disturbance: for example, telescope pointing must be accurate to within 4 milli-arcseconds, and the jitter of optics must be less than 5 nm. This paper communicates the architecture and predicted performance of a precision pointing and vibration isolation approach for TPF-C called Disturbance Free Payload (DFP) * . In this architecture, the spacecraft and payload fly in close-proximity, and interact with forces and torques through a set of non-contact interface sensors and actuators. In contrast to other active vibration isolation approaches, this architecture allows for isolation down to zero frequency, and the performance of the isolation system is not limited by sensor characteristics. This paper describes the DFP architecture, interface hardware and technical maturity of the technology. In addition, an integrated model of TPF-C Flight Baseline 1 (FB1) is described that allows for explicit computation of performance metrics from system disturbance sources. Using this model, it is shown that the DFP pointing and isolation architecture meets all pointing and jitter stability requirements with substantial margin. This performance relative to requirements is presented, and several fruitful avenues for utilizing performance margin for system design simplification are identified.
Terrestrial Planet Finder (TPF) is a mission to locate and study extrasolar Earthlike planets. The TPF Coronagraph (TPF-C), planned for launch in the latter half of the next decade, will use a coronagraphic mask and other optics to suppress the light of the nearby star in order to collect visible light fkom such planets. The required contrast ratio of 5e-11 can only be achieved by maintaining pointing accuracy to 4 milli-arcseconds, and limiting optics jitter to below 5 rim. Numerous mechanical disturbances act to induce jitter. This paper concentrates on passive isolation techniques to minimize the optical degradation introduced by disturbance sources. A passive isolation system, using compliant mounts placed at an energy bottleneck to reduce energy transmission above a certain frequency, is a low risk, flight proven design approach. However, the attenuation is limited, compared to an active system, so the feasibility of the design must be demonstrated by analysis. The paper presents the jitter analysis for the baseline TPF design, using a passive isolation system. The analysis model representing the dynamics of the spacecraft and telescope is described, with emphasis on passive isolator modeling. Pointing and deformation metrics, consistent with the TPF-C error budget, are derived. Jitter prediction methodology and results are presented. Then an analysis of the critical design parameters that drive the TPFC ~ jitter response is performed.
During the preliminary design phase of space-based interferometer missions, observational requirements need to be translated into dynamical accuracy requirements on the optical components. The first part of this paper presents a methodology that specifies allowable statistical variances on the optical path difference in order to achieve a specified mean level of null depth for a nulling interferometer. These dynamical requirements can then be used as inputs to controller design processes which ensures that the closed-loop system satisfies the performance requirements.The second part of this paper describes a staging control design tool that optimally uses a suite of actuators to reject disturbances and analyzes the performance limitations as a function of actuator constraints. The particular actuator constraints considered here are saturation limit, resolution level, and the operational bandwidth of each actuator. As an example, the control design tool is applied to an example optical delay line problem yielding a feedback control law which ensures nanometer level stabilization of optical path difference for the interferometer. This benchmark problem allows the control design tool to demonstrate its capabilities on a system with stringent dynamical requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.