BackgroundSeveral lines of evidence point to a particularly important role of the left atrium (LA) in initiating and maintaining atrial fibrillation (AF). This role may be related to the location of pulmonary veins (PVs) in the LA. The aim of the present study was to investigate the action potential (AP) and ionic currents in LA-PV cardiomyocytes isolated from Bio14.6 myopathic Syrian hamsters (36-57 week-old) versus age-matched F1B healthy control hamsters.Methods and ResultsWhole-cell patch-clamp techniques were used to record AP in current-clamp mode and ionic currents in voltage-clamp mode. The results obtained show that in both healthy and myopathic LA-PV tissue spontaneously discharging cardiomyocytes can be found, but they are more numerous in myopathic (9/29) than in healthy hamsters (4/42, p < 0.05 by χ2 analysis). Myopathic myocytes have shorter AP duration (APD) with smaller ICa,L and INCX than the healthy control. The currents ITO, IK, IK1 and ICa,T are not significantly different in myopathic versus healthy cells.ConclusionsOur results indicate that in myopathic Syrian hamsters LA-PV cardiomyocytes are more prone to automatic rhythms. Also, they show altered electrophysiologic properties, which may be due to abnormal Ca2+ channels and may account for contractile dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.