This paper presents systematic investigation of the microchannel surface properties in microCE chips. Three popular materials for microCE chips, polydimethylsiloxane (PDMS), quartz, and glass, are used. The zeta potentials of these microchannels are calculated by measuring the EOF velocity to evaluate the surface properties after surface modification. The hydrophobic PDMS is usually plasma-treated for microCE applications. In this study, a new method using a high-throughput atmospheric plasma generator is adopted to treat the PDMS surface under atmospheric conditions. In this approach, the cost and time for surface treatment can be significantly reduced compared with the conventional vacuum plasma generator method. Experimental results indicate that new functional groups could be formed on the PDMS surface after treatment, resulting in a change in the surface property. The time-dependent surface property of the plasma-treated PDMS is then measured in terms of the zeta potential. Results show that the surface property will reach a stable condition after 1 h of plasma treatment. For glass CE chips, two new methods for changing the microchannel surface properties are developed. Instead of using complicated and time-consuming chemical silanization procedures for CE channel surface modification, two simple and reliable methods utilizing organic-based spin-on-glass and water-soluble acrylic resin are reported. The proposed method provides a fast batch process for controlling the surface properties of glass-based CE channels. The proposed methods are evaluated using PhiX-174 DNA maker separation. The experimental data show that the surface property is modified and separation efficiency greatly improved. In addition, the long-term stability of both coatings is verified in this study. The methods proposed in this study show potential as an excellent solution for glass-based microCE chip surface modification.
This study presents a new active micromixer with high mixing efficiency achieved by means of a gradient distribution of the surface zeta potential controlled by changing the frequency of voltage applied on shielding electrodes. Gradient surface zeta potential is generated by applying a high voltage to inclined buried shielding electrodes. While alternating the frequency of driving voltage, the zeta potential could be changed accordingly, thus providing a significant mixing effect inside microchannels. A theoretical model is proposed to predict the distribution of zeta potential. The results from this model are critically compared with the well-developed three-capacitor model. Additionally, two time-factor scales, the charge time of capacitor and mixing length flow time, are used to predict the optimum frequency. The prediction of optimum frequency, 0.5 Hz, is consistent with experimental results. Moreover, a five-pair inclined shielding electrode with a frequency of 0.5 Hz leads to a significant improvement in the mixing performance of the active micromixer. Numerical results indicate that a localized flow circulation is generated when the control voltage is applied to the inclined shielding electrodes. Furthermore, the streamlines are experimentally observed by using fluorescent beads. The shape of this circulation is dependent on the distribution of gradient zeta potential, which is determined by the arrangement of electrodes. The effects of the number of electrode pairs and the layout of shielding electrodes on the mixing performance of micromixer are also explored both numerically and experimentally. It is revealed that five-pair inclined electrodes at 0.5 Hz provide the highest mixing efficiency. Finally, a reaction between N-benzoyl-L-arginine-p-nitroanilide and trypsin enzyme is performed to verify the capability of micromixers. The experimental results reveal that the reaction can achieve a higher performance indicating a higher mixing efficiency. The active micromixers could be used in microfluidic systems for improving the mixing efficiency and thus enhancing the bioreaction.
This study presents a new active micro-mixer which enhances the mixing efficiency by means of a gradient distribution of the surface zeta potential generated by applying a control voltage to an arrangement of inclined buried shielding electrodes. A theoretical model is developed to predict the distribution of the zeta potential and the thickness of the transition layer. The validity of this model is confirmed experimentally. Numerical simulations are performed to characterize the fluid flow patterns and to optimize the design of the micro-mixer. It is shown that optimizing the arrangement of the inclined shielding electrodes leads to a significant enhancement in the mixing performance of the active micro-mixer. The numerical results indicate that a localized flow circulation is generated when the control voltage is applied to the inclined shielding electrodes. The shape of this circulation is dependent on the distribution of the gradient zeta potential, which is determined in turn by the arrangement of the electrodes. The effect of the number of electrode pairs and the layout of the shielding electrodes on the mixing performance of the micro-mixer is explored both numerically and experimentally. It is revealed that the inclined electrode layouts with five electrode pairs provide the highest mixing efficiency of almost 93%. The active micro-mixer developed in this study represents a crucial advancement in microfluidic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.