This study proposed a procedure of using the energy method to evaluate the SSI-related damping effect when the soil–structure interaction (SSI) was considered in a bridge pier system, which can thus be deemed a soil–foundation–superstructure (SFS) inelastic system. Firstly, the SSI is implemented by adopting a discrete-time recursive filter approach as well as frequency-dependent foundation–soil impedance functions to solve for the external soil forces exerted onto the foundation. Then, by integrating such external soil forces into the motion equations of the SSI-based SFS system, the energy equations can be formulated during the ground motions. To demonstrate the proposed procedure, an implementation study involving a bridge pier was carried out, considering two earthquake recordings. The resultant energy quantities and SSI-related damping ratio shed light on how the aspects of earthquake characteristics affected the energy dissipation mechanism of the bridge pier SSI-based SFS system. This proposed procedure renders a promising solution for quantifying the soil role in the seismic energy dissipation of arbitrary single- and multiple-degree-of-freedom systems considering the SSI effect. The results obtained show that the SSI effect was suppressed when the SFS system underwent near-fault earthquakes, which illustrated that the stiffness and damping contribution from the soil was not pronounced. Furthermore, near-fault earthquakes with large incremental velocities may lead to a low SSI-related damping ratio (SSIDR).
This study aimed to investigate the effect of soil–structure interaction (SSI) on the inelastic displacement ratio of bridge structures subjected to near-fault pulse-like earthquake ground motions. SSI was modeled using a discrete-time recursive filter approach and frequency-dependent foundation–soil impedance functions. A total of 105 near-fault earthquake ground motion records were used for the analysis. The study also compared the soil–foundation–superstructure (SFS) system with a fixed-base system to explore the effects of spectral period normalization, strength reduction factor, earthquake magnitude, site-to-source distance, and peak ground velocity on the inelastic displacement ratio. The findings indicate that both the SFS and fixed-base systems have significant inelastic displacement demand under near-fault earthquakes, with values that can be 2–3 times higher than those predicted by ASCE-41-13, particularly in the short period range. Furthermore, as the structural period approaches the earthquake pulse period, the SFS system generally shows larger inelastic displacement ratios compared to the fixed-base system. The analytical results provide insight into the factors affecting the inelastic displacement ratio for near-fault pulse-like earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.