We consider the structure of current and stress tensor two-point functions in conformal field theory with a boundary. The main result of this paper is a relation between a boundary central charge and the coefficient of a displacement operator correlation function in the boundary limit. The boundary central charge under consideration is the coefficient of the product of the extrinsic curvature and the Weyl curvature in the conformal anomaly. Along the way, we describe several auxiliary results. Three of the more notable are as follows: (1) we give the bulk and boundary conformal blocks for the current twopoint function; (2) we show that the structure of these current and stress tensor two-point functions is essentially universal for all free theories; (3) we introduce a class of interacting conformal field theories with boundary degrees of freedom, where the interactions are confined to the boundary. The most interesting example we consider can be thought of as the infrared fixed point of graphene. This particular interacting conformal model in four dimensions provides a counterexample of a previously conjectured relation between a boundary central charge and a bulk central charge. The model also demonstrates that the boundary central charge can change in response to marginal deformations.
We probe the conformal block structure of a scalar four-point function in d ≥ 2 conformal field theories by including higher-order derivative terms in a bulk gravitational action. We consider a heavy-light four-point function as the boundary correlator at large central charge. Such a four-point function can be computed, on the gravity side, as a two-point function of the light operator in a black hole geometry created by the heavy operator. We consider analytically solving the corresponding scalar field equation in a near-boundary expansion and find that the multi-stress tensor conformal blocks are insensitive to the horizon boundary condition. The main result of this paper is that the lowest-twist operator product expansion (OPE) coefficients of the multi-stress tensor conformal blocks are universal: they are fixed by the dimension of the light operators and the ratio between the dimension of the heavy operator and the central charge C T . Neither supersymmetry nor unitary is assumed. Highertwist coefficients, on the other hand, generally are not protected. A recursion relation allows us to efficiently compute universal lowest-twist coefficients. The universality result hints at the potential existence of a higher-dimensional Virasoro-like symmetry near the lightcone. While we largely focus on the planar black hole limit in this paper, we include some preliminary analysis of the spherical black hole case in an appendix.Aside from making the expressions more compact, the variable σ defined above is convenient since it parameterizes the angle away from the lightcone of the path made when one varies 32 This fact is obvious for n = 0, since Q 0 (w) = 1. Taking Q 2n (w) ∼ w γn at small w, the field equation requires γ n = γ n−1 − 2 for the contributions from subsequent Q 2n (w)s to cancel against each other.33 In our convention, a n,n = (−4) J 2 c OPE (τ min , J) in d = 4.
Employing a conformal map to hyperbolic space cross a circle, we compute the universal contribution to the vacuum entanglement entropy (EE) across a sphere in even-dimensional conformal field theory. Previous attempts to derive the EE in this way were hindered by a lack of knowledge of the appropriate boundary terms in the trace anomaly. In this paper we show that the universal part of the EE can be treated as a purely boundary effect. As a byproduct of our computation, we derive an explicit form for the A-type anomaly contribution to the Wess-Zumino term for the trace anomaly, now including boundary terms. In d = 4 and 6, these boundary terms generalize earlier bulk actions derived in the literature.
Boundary conformal field theories have several additional terms in the trace anomaly of the stress tensor associated purely with the boundary. We constrain the corresponding boundary central charges in three- and four-dimensional conformal field theories in terms of two- and three-point correlation functions of the displacement operator. We provide a general derivation by comparing the trace anomaly with scale dependent contact terms in the correlation functions. We conjecture a relation between the a-type boundary charge in three dimensions and the stress tensor two-point function near the boundary. We check our results for several free theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.