Identification of argumentative components is an important stage of argument mining. Lexicon information is reported as one of the most frequently used features in the argument mining research. In this paper, we propose a methodology to integrate lexicon information into a neural network model by attention mechanism. We conduct experiments on the UKP dataset, which is collected from heterogeneous sources and contains several text types, e.g., microblog, Wikipedia, and news. We explore lexicons from various application scenarios such as sentiment analysis and emotion detection. We also compare the experimental results of leveraging different lexicons.
Argument structure elaborates the relation among claims and premises. Previous works in persuasiveness prediction do not consider this relation in their architectures. To take argument structure information into account, this paper proposes an approach to persuasiveness prediction with a novel graph-based neural network model, called heterogeneous argument attention network (HARGAN). By jointly training on the persuasiveness and stance of the replies, our model achieves the state-of-the-art performance on the ChangeMyView (CMV) dataset for the persuasiveness prediction task. Experimental results show that the graph setting enables our model to aggregate information across multiple paragraphs effectively. In the meanwhile, our stance prediction auxiliary task enables our model to identify the viewpoint of each party, and helps our model perform better on the persuasiveness prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.