Many studies have indicated that loss of the osteoblastogenic potential in bone marrow mesenchymal stem cells (bmMSCs) is the major component in the etiology of the aging-related bone deficit. But how the bmMSCs lose osteogenic capability in aging is unclear. Using 2-dimentional cultures, we examined the dose response of human bmMSCs, isolated from adult and aged donors, to exogenous insulin-like growth factor 1 (IGF-1), a growth factor regulating bone formation. The data showed that the mitogenic activity and the osteoblastogenic potential of bmMSCs in response to IGF-1 were impaired with aging, whereas higher doses of IGF-1 increased the proliferation rate and osteogenic potential of aging bmMSCs. Subsequently, we seeded IGF-1-overexpressing aging bmMSCs into calcium-alginate scaffolds and incubated in a bioreactor with constant perfusion for varying time periods to examine the effect of IGF-1 overexpression to the bone-forming capability of aging bmMSCs. We found that IGF-1 overexpression in aging bmMSCs facilitated the formation of cell clusters in scaffolds, increased the cell survival inside the cell clusters, induced the expression of osteoblast markers, and enhanced the biomineralization of cell clusters. These results indicated that IGF-1 overexpression enhanced cells' osteogenic capability. Thus, our data suggest that the aging-related loss of osteogenic potential in bmMSCs can be attributed in part to the impairment in bmMSCs' IGF-1 signaling, and support possible application of IGF-1-overexpressing autologous bmMSCs in repairing bone defect of the elderly and in producing bone graft materials for repairing large scale bone injury in the elderly.
Previous, we found that the small molecules capable of inhibiting the expression and the pro-adipogenic activity of ZNF521 might improve the osteogenic performance of aging human bone marrow MSCs (bmMSCs), and that fatty acid synthase (FASN) was a critical effector of ZNF521’s pro-adipogenic activity. Here, by characterizing the netoglitazone (MCC-555), one of the thiazolidinediones known as adipogenic enhancers, as an inhibitor of ZNF521 expression, we found that MCC-555 indeed also harbored pro-osteoblastic effect. Investigation revealed that MCC-555 might function as a GSK3β inhibitor to promote osteoblastogenesis and bone formation. Importantly, combination of MCC-555 with FASN knockdown, but not with GW9662 (a PPARγ2 antagonist), blocked the pro-adipogenic but retained the pro-osteoblastic effect of MCC-555. Using a 3-dimentional culture system, we showed that MCC-555 facilitated the FASN-knockdown of aging human bmMSCs to form cell clusters in scaffolds, and to promote osteoblastic differentiation and biomineralization in cell clusters. These data indicated that MCC-555 promoted bmMSCs to produce bone-like tissues. Our data narrate a thiazolidinedione-based novel strategy to improve the osteogenic performance of aging bmMSCs to support the application of autologous aging bmMSCs in cell therapy and in producing bone-like tissues for repairing bone injury in the elderly.
Ndt80p is an important transcription modulator to various stress-response genes in Candida albicans, the most common human fungal pathogen in systemic infections. We found that Ndt80p directly regulated its target genes, such as YHB1, via the mid-sporulation element (MSE). Furthermore, the ndt80(R432A) allele, with a reduced capability to bind MSE, failed to complement the defects caused by null mutations of NDT80. Thus, the R432 residue in the Ndt80p DNA-binding domain is involved in all tested functions, including cell separation, drug resistance, nitric oxide inactivation, germ tube formation, hyphal growth, and virulence. Hence, the importance of the R432 residue suggests a novel approach for designing new antifungal drugs by blocking the interaction between Ndt80p and its targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.