Various pretreatments are employed to increase the utilization of rice straw as a ruminant feed ingredient to minimize its negative environmental impact. However, an efficient alternative is still needed. The purpose of this study was to evaluate the ability of ammonia and/or white-rot fungi (Pleurotus ostreatus) to degrade lignin, increase the nutritional value, and enhance the rumen fermentability of rice straw. Rice straw was treated with ammonia and/or basidiomycete white-rot fungi (P. ostreatus) with untreated straw as control under solid-state fermentation employing a completely randomized design. The crude protein increased from 2.05% in the control to 3.47% in ammoniated rice straw, 5.24% in basidiomycete white-rot fungi (P. ostreatus), and 6.58% in ammoniated-basidiomycete white-rot fungi-treated (P. ostreatus) rice straw. The ammoniated-basidiomycete white-rot fungi-treated (P. ostreatus) rice straw had the least lignin content (3.76%). Ammoniated-basidiomycete white-rot fungi-treated (P. ostreatus) rice straw had improved in vitro dry matter digestibility (65.52%), total volatile fatty acid (76.56 mM), and total gas production (56.78 mL/g) compared to ammoniated rice straw (56.16%, 67.71 mM, 44.30 mL/g) or basidiomycete white-rot fungi-treated (P. ostreatus) rice straw (61.12%, 75.36 mM, 49.31 mL/g), respectively. The ammoniated-basidiomycete white-rot fungi (P. ostreatus) treatment improved rice straw’s nutritional value, in vitro dry matter digestibility, volatile fatty acids, and gas production.
Fermentation of agricultural by-products by white rot fungi is a research hotspot in the development of ruminant feed resources. The aim of this study was to investigate the potential of the nutritional value and rumen fermentation properties of white tea residue fermented at different times, using single and dual culture white rot fungal species. Phanerochaete chrysosporium, Pleurotus ostreatus, and Phanerochaete chrysosporium + Pleurotus ostreatus (dual culture) solid-state fermented white tea residue was used for 4 weeks, respectively. The crude protein content increased significantly in all treatment groups after 4 weeks. Total extractable tannin content was significantly decreased in all treatment groups (p < 0.01). P. chrysosporium and dual culture significantly reduced lignin content at 1 week. The content of NH3-N increased in each treatment group (p < 0.05). P. chrysosporium treatment can reduce the ratio of acetic to propionic and improve digestibility. Solid state fermentation of white tea residue for 1 week using P. chrysosporium was the most desirable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.