Motion blur frequently occurs in dense 3D reconstruction using a single moving camera, and it degrades the quality of the 3D reconstruction. To handle motion blur caused by rapid camera shakes, we propose a blur-aware depth reconstruction method, which utilizes a pixel correspondence that is obtained by considering the effect of motion blur. Motion blur is dependent on 3D geometry, thus parameterizing blurred appearance of images with scene depth given camera motion is possible and a depth map can be accurately estimated from the blur-considered pixel correspondence. The estimated depth is then converted into pixel-wise blur kernels, and non-uniform motion blur is easily removed with low computational cost. The obtained blur kernel is depth-dependent, thus it effectively addresses scene-depth variation, which is a challenging problem in conventional non-uniform deblurring methods.
In this paper, we propose a convex optimization framework for simultaneous estimation of super-resolved depth map and images from a single moving camera. The pixel measurement error in 3D reconstruction is directly related to the resolution of the images at hand. In turn, even a small measurement error can cause significant errors in reconstructing 3D scene structure or camera pose. Therefore, enhancing image resolution can be an effective solution for securing the accuracy as well as the resolution of 3D reconstruction. In the proposed method, depth map estimation and image super-resolution are formulated in a single energy minimization framework with a convex function and solved efficiently by a first-order primal-dual algorithm. Explicit inter-frame pixel correspondences are not required for our super-resolution procedure, thus we can avoid a huge computation time and obtain improved depth map in the accuracy and resolution as well as highresolution images with reasonable time. The superiority of our algorithm is demonstrated by presenting the improved depth map accuracy, image super-resolution results, and camera pose estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.