Purpose The purpose of this study is to use waste materials in construction to create sustainable practices. This will contribute towards circular economy which has gained momentum in recent years throughout the world. Design/methodology/approach Waste materials cause enormous environmental problems that can have an adverse effect on the environment. Recycling of waste consists an important part of the circular economy. Therefore, researchers have been investigating the economic use of a variety of waste materials for reducing their environmental impact. One potential usage is in road subbase fill materials where wastes can be incorporated in large quantities. In this study, the engineering properties of road subbase fill materials (i.e. kaolinite) mixed with Granite Waste (GW), coal Fly Ash (FA) and lime are investigated. Kaolinite was replaced with 15% lime and FA, whereas the GW replacement varied from 10% to 20%. Testing included strength of the various soil compositions subjected to different curing times. Also the microstructural analyses and phase changes of samples were conducted using scanning electron microscopy and x-ray diffraction techniques, respectively. The results obtained indicate that GW can be incorporated in road base materials to improve its bearing capacity. The mixture consisting of 15% lime, 15% FA, 20% GW and 50% kaolinite resulted in maximum dry unit weight and optimum moisture content. Using GW exhibited a noticeable increase in the California Bearing Ratio of more than eight times at 1 day and 28 days curing regime compared with the control sample. Findings This study shows that GW and FA can be used for road subbase materials and can contribute toward a better and cleaner environment. Originality/value In this study, the engineering properties of road subbase fill materials (i.e. kaolinite) mixed with GW, coal FA and lime are investigated. This are value added in circular economy.
A soil’s physical properties, mineral types, and pore structure significantly influence the shape and properties of the soil-water characteristic curve (SWCC). This study investigated the effects of the soil’s physical properties and mineral types on the SWCC and pore-size distribution (PSD). Eight different soils from an alluvial deposit in Istanbul and Adapazarı/Türkiye were used in the study. The test samples were prepared by compaction at optimum water content (OWC) and wet side of optimum water content (wet of OWC). The samples were prepared by consolidation from the slurry. The PSDs of the samples were calculated using the SWCCs and evaluated with scanning electron microscope (SEM) analysis. In addition, the mineral types of all soils were determined by X-ray diffraction analysis. The soil which contains illite-type minerals has higher matric suction than containing kaolin-type. The effect of the clay percentage is more pronounced in silty soils than in plasticity and activity. Soil suction increased with decreasing compaction water content in clayey soils. The air entry water contents rose as the void ratio, liquid limit, clay content, and plasticity increased. The compaction conditions affected the macropore structure more than the micropore structure. In addition, the ratio of macro-micro pore sizes increased with the rise of the compaction water content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.