Volumetric muscle loss (VML) overwhelms the innate regenerative capacity of mammalian skeletal muscle (SkM), leading to numerous disabilities and reduced quality of life. Immune cells are critical responders to muscle injury and guide tissue resident stem cell and progenitor mediated myogenic repair. However, how immune cell infiltration and inter-cellular communication networks with muscle stem cells are altered following VML and drive pathological outcomes remains underexplored. Herein, we contrast the cellular and molecular mechanisms of VML injuries that result in fibrotic degeneration or regeneration of SkM. Following degenerative VML injuries, we observe heightened infiltration of natural killer (NK) cells as well as persistence of neutrophils beyond two weeks post injury. Functional validation of NK cells revealed an antagonistic role on neutrophil accumulation in part via inducing apoptosis and CCR1 mediated chemotaxis. The persistent infiltration of neutrophils in degenerative VML injuries was found to contribute to impairments in muscle stem cell regenerative function, which was also attenuated by transforming growth factor beta 1 (TGFb1). Blocking TGFb signaling reduced neutrophil accumulation and fibrosis, as well as improved muscle specific force. Collectively, these results enhance our understanding of immune cell-stem cell crosstalk that drives regenerative dysfunction and provide further insight into possible avenues for fibrotic therapy exploration.
During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function in that impacts mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs), but the relationship between MuSCs and neural control has not been established. Herein, using a combination of single-cell transcriptomic analysis, high-resolution immunofluorescence imaging and transgenic young and aged mice as well as from mice with neuromuscular degeneration (Sod1 -/-), a compensatory neuro-responsive function for a subset of MuSCs was identified. Genetic rescue of motor neurons in Sod1 -/mice reduced this subset of MuSCs and restored integrity of the neuromuscular junction (NMJ) in a manner akin to young muscle. Administration of severe neuromuscular trauma induced young MuSCs to specifically engraft in a position proximal to the NMJ but in aging, this behavior was abolished. Contrasting the expression programs of young and aged MuSCs after muscle injury at the single cell level, we observed distinctive gene expression programs between responses to neuro-muscular degeneration and muscle trauma. Collectively, these data reveal MuSCs sense synaptic perturbations during aging and neuro-muscular deterioration, and can exert support for the NMJ, particularly in young muscle. Highlights:• Transcriptional landscapes of single satellite cells from different ages before and after injury as well as neurodegenerative models before and after nervous rescue • A population of satellite cells reside in close proximity to neuromuscular synapse, which are lost with age • Denervation promotes satellite cell engraftment into post-synaptic regions of young as opposed to aged muscle Accession CodeGEO: 121589
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.