Specimens of bovine, rabbit, and human corneas were systematically tested in uniaxial tension to experimentally determine their effective nonlinear stress-strain relations, and hysteresis. Cyclic tensile tests were performed over the physiologic load range of the cornea, up to a maximum of 10 percent strain beyond slack strain. Dimensional changes to corneal test specimens, due to varying laboratory environmental conditions, were also assessed. The measured stress-strain data was found to closely fit exponential power function relations typical of collagenous tissues when appropriate account was taken of specimen slack strain. These constitutive relations are very similar for rabbit, human and bovine corneas; there was no significant difference between the species after preconditioning by one cycle. The uniaxial stress strain curves for all species behave similarly in that their tangent moduli increase at high loads and decrease at low loads as a function of cycling. In the bovine and rabbit data, there is a general trend towards more elastic behavior from the first to second cycles, but there is little variation in these parameters from the second to third cycles. In comparison, the human data demonstrates relatively little change between cycles. Increases in width of corneal test specimens, up to a maximum of 2 percent were found to occur under 95 percent relative humidity test conditions over 10 minutes elapsed time test periods, while specimens which were exposed to normal laboratory conditions (45 percent RH) were found to shrink in width up to a maximum of 9.5 percent over the same elapsed time period. The thickness of the test specimens were observed to decrease by 3 percent in 95 percent relative humidity and by 12 percent in 45 percent relative humidity over the same elapsed time period.
The risk-benefit for corneal transplantation has been significantly altered by improved surgical and postoperative techniques. The improved results, low complication rate, and postoperative enhancement management indicate that corneal transplantation is a viable option early in the clinical course of keratoconus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.