Three-dimensional (3D) displays have become important for many applications including vision research, operation of remote devices, medical imaging, surgical training, scientific visualization, virtual prototyping, and more. In many of these applications, it is important for the graphic image to create a faithful impression of the 3D structure of the portrayed object or scene. Unfortunately, 3D displays often yield distortions in perceived 3D structure compared with the percepts of the real scenes the displays depict. A likely cause of such distortions is the fact that computer displays present images on one surface. Thus, focus cues-accommodation and blur in the retinal image-specify the depth of the display rather than the depths in the depicted scene. Additionally, the uncoupling of vergence and accommodation required by 3D displays frequently reduces one's ability to fuse the binocular stimulus and causes discomfort and fatigue for the viewer. We have developed a novel 3D display that presents focus cues that are correct or nearly correct for the depicted scene. We used this display to evaluate the influence of focus cues on perceptual distortions, fusion failures, and fatigue. We show that when focus cues are correct or nearly correct, (1) the time required to identify a stereoscopic stimulus is reduced, (2) stereoacuity in a time-limited task is increased, (3) distortions in perceived depth are reduced, and (4) viewer fatigue and discomfort are reduced. We discuss the implications of this work for vision research and the design and use of displays.
Depth information from focus cues--accommodation and the gradient of retinal blur--is typically incorrect in three-dimensional (3-D) displays because the light comes from a planar display surface. If the visual system incorporates information from focus cues into its calculation of 3-D scene parameters, this could cause distortions in perceived depth even when the 2-D retinal images are geometrically correct. In Experiment 1 we measured the direct contribution of focus cues to perceived slant by varying independently the physical slant of the display surface and the slant of a simulated surface specified by binocular disparity (binocular viewing) or perspective/texture (monocular viewing). In the binocular condition, slant estimates were unaffected by display slant. In the monocular condition, display slant had a systematic effect on slant estimates. Estimates were consistent with a weighted average of slant from focus cues and slant from disparity/texture, where the cue weights are determined by the reliability of each cue. In Experiment 2, we examined whether focus cues also have an indirect effect on perceived slant via the distance estimate used in disparity scaling. We varied independently the simulated distance and the focal distance to a disparity-defined 3-D stimulus. Perceived slant was systematically affected by changes in focal distance. Accordingly, depth constancy (with respect to simulated distance) was significantly reduced when focal distance was held constant compared to when it varied appropriately with the simulated distance to the stimulus. The results of both experiments show that focus cues can contribute to estimates of 3-D scene parameters. Inappropriate focus cues in typical 3-D displays may therefore contribute to distortions in perceived space.
Typical stereo displays provide incorrect focus cues because the light comes from a single surface. We describe a prototype stereo display comprising two independent fixed-viewpoint volumetric displays.Like autostereoscopic volumetric displays, fixedviewpoint volumetric displays generate near-correct focus cues without tracking eye position, because light comes from sources at the correct focal distances. (In our prototype, from three image planes at different physical distances.) Unlike autostereoscopic volumetric displays, however, fixed-viewpoint volumetric displays retain the qualities of modern projective graphics: view-dependent lighting effects such as occlusion, specularity, and reflection are correctly depicted; modern graphics processor and 2-D display technology can be utilized; and realistic fields of view and depths of field can be implemented. While not a practical solution for general-purpose viewing, our prototype display is a proof of concept and a platform for ongoing vision research. The design, implementation, and verification of this stereo display are described, including a novel technique of filtering along visual lines using 1-D texture mapping.
Typical stereo displays provide incorrect focus cues because the light comes from a single surface. We describe a prototype stereo display comprising two independent fixed-viewpoint volumetric displays.Like autostereoscopic volumetric displays, fixedviewpoint volumetric displays generate near-correct focus cues without tracking eye position, because light comes from sources at the correct focal distances. (In our prototype, from three image planes at different physical distances.) Unlike autostereoscopic volumetric displays, however, fixed-viewpoint volumetric displays retain the qualities of modern projective graphics: view-dependent lighting effects such as occlusion, specularity, and reflection are correctly depicted; modern graphics processor and 2-D display technology can be utilized; and realistic fields of view and depths of field can be implemented. While not a practical solution for general-purpose viewing, our prototype display is a proof of concept and a platform for ongoing vision research. The design, implementation, and verification of this stereo display are described, including a novel technique of filtering along visual lines using 1-D texture mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.